Introduction
Arctic cod (Boreogadus saida) is a nodal species in Arctic marine food webs. It preys on a variety of zooplankton and benthoic-oriented organisms, and is itself an important prey of many birds, marine mammals, and fishes. Arctic cod is one of the most abundant Arctic fishes and can be found in both benthic and pelagic environments, and in association with sea ice. We present the diet composition of Arctic cod collected throughout the eastern Chukchi Sea during the summer of 2012, and we test for differences in diet composition with respect to predator size and latitude.

Methods
Arctic cod was frequently caught during a bottom-trawl survey of the eastern Chukchi Sea during the summer of 2012. Stomach samples were collected from 57 different hauls, covering a latitudinal range from 66 to 73°N (Figure 1). We divided the study area into 3 subregions to explore latitudinal variation in diet composition. Arctic cod encompasses ranged in size from 5.7 to 19.3 cm fork length (mean 11.2 cm). To examine size-based differences in diet we divided predator stomachs into three size classes (Table 1). We use permutational multivariate analysis of variance (perMANOVA) to test for differences in diet composition with respect to predator size and latitude.

To aid interpretation of diet data and highlight underlying patterns we used Principal Coordinate Analysis (PCoA) to depict the dissimilarity among stomachs in ordination space. The significance of principal components was evaluated with the broken stick criterion. We conducted Constrasted Analysis on Principal Coordinate (CAP) to determine how much variation in the diet compositions could be explained by a constraining matrix of environmental variables and predator length.

Results
The Arctic cod diet varied with predator size (F=9.54, R²=0.025, p<0.0001) (Figures 2-4). In the northern Chukchi Sea, the proportion of benthos-oriented prey in the diet, such as gammarids and shrimp, increased with predator size, while the importance of copepods decreased with predator size.

The diet composition also varied with latitude (F=27.29, R²=0.072, p<0.0001) (Figures 2-4). Fish were a more important prey item in the southern Chukchi Sea, while in the northern Chukchi Sea copepods were of greater importance. The proportion of euphausiids in the diet decreased with increasing latitude across the entire study region.

The first 2 principal components (PC) of the PCoA explained 13% and 8% respectively of the observed variation in diet composition (Figure 5). Small and medium Arctic cod were widely distributed across ordination space reflecting their generalist diet, while the large size class had several negative values on both PCs.

Prey groups with significant loadings on the first two PCs (p<0.001) can be used to interpret the position of individuals in ordination space (Figure 6). Confidence ellipses (0.95) of the small and medium size classes are broadly overlapping and associated with all significant prey vectors, while the large size class is concentrated in the lower left corner and associated with prey vectors other than copepods and euphausiids (Figure 6).

The CAP analysis explained 30% of total variation in the Arctic cod diet compositions (ANOVAs, F=12.15, p<0.005). The first two CAP axes explained 8% of the variation in Arctic cod diet. The distance between the points on the CAP axis indicates their similarity to each other (Figure 7). The diet composition of an individual is generally dominated by prey located near them in the ordination space. For example, Arctic cod located in the upper left corner of the plot (2nd quadrant) consumed higher proportions of shrimp and fish (Teleostei).

The environmental variables are represented by vectors which depict the strength and direction of change in a variable through the ordination space (Figure 7). The strongest vectors for latitude and predator length, which is consistent with the perMANOVA results. Stomachs that are positive on the first axis (CAP1) are associated with increasing latitude and high proportions of copepods in the diet. The length vector is negatively related with both CAP axes. Predators whose stomachs are located near this vector are larger in size and their diets include high percentages of shrimp and fish (Teleostei).

Conclusions
Arctic cod are opportunistic predators consuming a wide range of benthic and pelagic prey.

The diet composition of Arctic cod in the eastern Chukchi Sea was significantly different among different size classes. Larger predators consumed more fish and shrimp and smaller predators consumed more copepods and other mesopelagic.

The diet composition also varied significantly with latitude. Fish and euphausiids were of greater importance in the southern Chukchi Sea, while in the northern Chukchi Sea copepods, shrimp, and gammarid amphipods were of greater importance.

Environmental variables and predator length explained 10% of the variation in Arctic cod diet composition.

Regular sampling of Arctic cod diets (e.g., every 3 to 5 years) across this region will be necessary to determine if the patterns and trends in diet composition observed here are persistent or due to interannual variation.

Acknowledgements
This work was conducted as part of the Arctic Ecosystem Integrated Survey (Arctic Eis) with funding provided by the Bureau of Ocean Energy Management (BOEM), Environmental Studies Program and the Coastal Impact Assistance Program (CIAP) of the U.S. Fish & Wildlife Service (USFWS). We would like to thank Geoff Lang (NOAA) for data management and technical support. Special thanks to Julius Olof (UW/SAFS) for technical instructions. We are grateful to all Arctic Eis participants who helped with sample collection. We would also like to extend our thanks to the Captain and crew of the EV Alaska Knight, and the Captain and crew of the EV Bering Explorer for their efforts in support of this work.