Spatial And Temporal Variability of Zooplankton Community Structure In The Chukchi Sea (2010-2012)

Adam Spear1, Jeff Napp1, Janet Duffy-Anderson1, Sigrid Salo2, and Phyllis Stabeno1

1 Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 700 Sand Point Way N.E., Seattle, Washington 98115, Adam.Spear@noaa.gov, Jeff.Napp@noaa.gov, Janet.Duffy-Anderson@noaa.gov
2 Pacific Marine Environmental Laboratory, NOAA, 700 Sand Point Way N.E., Seattle, Washington 98115, Sigrid.A.Salo@noaa.gov, Phyllis.Stabeno@noaa.gov

Introduction and Approach
Changes underway in the US Arctic are unprecedented; the physical environment is experiencing increases in temperature, progressive declines in sea ice concentration, earlier spring ice retreat, and delayed fall ice formation. This physical restructuring is expected to propagate through the ecosystem, and include changes in primary, secondary and upper trophic level production. As part of the Chukchi Acoustic, Oceanographic, and Zooplankton (CHAOZ) project, a series of bio-oceanographic research surveys in the US Chukchi Sea were conducted in summer in 2010, 2011, and 2012 to characterize the physical environment and examine biological response. Surveys were conducted in August of each year (30 DAS) and collected data on water column properties (CTD), oceanographic currents (moorings, satellite-tracked drifters) sea ice presence and extent, and zooplankton prey base (Tucker trawls). Physical data were analyzed and evaluated relative to spatial and temporal patterns of zooplankton community structuring (multivariate clustering, PRIMER-E) to evaluate the influence of bottom-up forcing on secondary production.

Results

Figure 1. Sea Ice. Percent coverage on August 2, 2010 (top), 2011 (middle), 2012 (bottom). 2012 was a lower ice year in the Chukchi Sea overall, but there was more ice in the sampling region at the time of the surveys in that year compared to 2010 & 2011. Ocean temperatures (not shown) indicate colder conditions in 2012 and corroborate sea ice observations.

Figure 2. Colored symbols indicate mooring measurements located off Icy Cape (Figure 1). Black circles indicate Bering strait measurements. Volume transport was below average from March – May in 2012; average and above average March – May 2010. No data for 2011. Annual mean transport through Bering Strait was higher 2010 - 2011 than 2012 (Woodgate et al., 2013). Collectively results indicate that despite above average flow to the NE just prior to and during the sampling period, overall flow was reduced in 2012, suggesting influence of southern-origin water and colder conditions in 2012.

Figure 3. Satellite-tracked 30 m depth drifters (2012). The color of the line (see key below the plot) reflects SST (°C). Drifter trajectories (July–October) illustrate advective transport along the Chukchi Shelf, into Barrow Canyon and the Beaufort Gyre. Top left inset illustrates generalized current flow.

Figure 4. Water mass designations. Circle halves indicate surface (top half) and bottom (bottom half), respectively. Presence of Alaskan Coastal Water (ACW) was significant in 2010 and was not constrained to the nearshore. Melt Water (MW) and Winter Water (WW) were more prominent in 2011. Remaining water mass abbreviations: BSW, Bering Sea Shelf Water; SW, Siberian Coastal Water.

Figure 5. Zooplankton community cluster analysis. Zooplankton assemblages in the north (dk green) in 2010 and 2011 were characterized by harpacticoids, cladocerans, cirripedia, Pseudocalanus spp, and Calanus spp. In 2012, a distinct northern assemblage was noted (dk red) with lower numbers of most of the above species and more Calanus gracilis, an arctic copepod. Greater heterogeneity in the species assemblages in 2012 reflects the additional complexity in circulation. In 2010 the influence of ACW was noted as an assemblage (dk blue circles) characterized by greater numbers of cladocerans, amphipods, and fewer larvaceans.

Figure 6. Transport Duration. Cumulative time (d) of zooplankton transport from St. Lawrence Island to the northeast Chukchi using known current speeds from moored ACP measurements. Green circles indicate estimated number of euphausiid calyptopis. Results suggest euphausiid reproduction in the Chukchi during warmer years, given the number of days for particle transport from the northern Bering Sea, and the development rates of Thysanoessa spp (Teghsus et al., 2015).

Conclusions

1. Physical conditions were different among the three years (warm ’10 & ’11, cold ’12) and are attributed to differential transport of water from the main sources, and the presence of sea ice and melt water.

2. Strong interannual and spatial variability of zooplankton community structure was influenced by water mass properties.

3. Warm years had a higher abundance of smaller zooplankton and presumed local reproduction of euphausiids.

4. In the cold year, with decreased Bering Strait transport, the zooplankton community structure over the shelf was more heterogeneous with increased abundance of large species.

Acknowledgements

The authors would like to thank Colleen Harpold and Kathy Miller for helping with figures and analysis. Study collaboration and funding were provided by the U.S. Department of Interior’s Bureau of Ocean Energy Management.

References