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Trophic ampli�cation of 
       climate change impacts 
on ground�sh species in the 
  eastern Bering Sea (USA) Approach

We used multi-species stock-assessment models to link 
climate-driven changes in physical and trophodynamic conditions 
to recruitment and mortality of three Eastern Bering Sea 
groundfish species (Gadus chalcogrammus, G. macrocephalus, and 
Atheresthes stomias, herafter pollock, P. cod, and arrowtooth, 
respectively) in order to distinguish harvest impacts on fish 
populations from large-scale climate pressures.

Methods
� A multi-species stock assessment model with 

temperature-specific growth and predation (CEATTLE) was 
used to derive estimates of age 1 recruitment (R) and 
spawning biomass (B) for 3 species of groundfish from the 
Bering Sea (walleye pollock, Pacific cod, and arrowtooth 
flounder).

� A coupled ROMS-NPZ model was used to derive 30+ historical 
indices of physical and biological conditions for the eastern 
Bering Sea (USA), such as bottom temperature, ice-melt 
derived cold water area (“Cold Pool”), aand seasonal 
zooplankton abundance.

� We then fit spawner-recruitment models using CEATTLE 
estimates of historical B and R and modeled residual error as a 
function of ROMS/NPZ indices. AIC was used to identify 
ROMS/NPZ indices that were most correlated with residuals.

� CEATTLE was projected forward to 2040, where recruitment in 
each projection year was based on IPCC scenario-driven 
ROMS/NPZ future indices.

Results
� Inclusion of zooplankton and Cold Pool area indices improved 

model estimates of annual recruitment (Fig. 2).

� All models project declines in recruitment and acceptable 
biological catch (ABC) under future conditions relative to 
scenarios based on stationary future conditions set at mean 
historical values (except for the multi-species mode under 
future conditions predicted from the CCCMA model; Figs. 3, 4).

� Projected declines in ABC were sensitive to model 
specifications of trophic interactions. Stock assessment models 
with predation exhibuted the largest projected declines in 
ABC, whereas single-species models without bottom-up 
controls on recruitment had the lowest projected changes in 
ABC (Figs. 3, 4).

Implications
Inclusion of trophic interactions amplified climate-driven declines 
or increases in fish abundances, implying that fisheries models that 
do not include trophic interactions or climate e�ects might 
over-estimate sustainable harvest rates for fish species negatively 
impacted by climate change (e.g., pollock), and under-estimate 
harvest rates for predator species positively impacted by climate 
change (e.g., arrowtooth). Our work emphasizes the need to 
evaluate multiple future scenarios and model structures when 
projecting climate e�ects on fishery species.

Kirstin Holsman
NOAA Fisheries
Alaska Fisheries Science Center
Seattle, Washington, USA

kirstin.holsman@noaa.gov
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Figure 2.  Pollock recruitment (R , 1 yr olds) time-series.  
Assessment model estimates of R (“Observed”) and 
model estimates of R from top selected models with 
covariates for recruitment based on ROMS/NPZ indices.

Figure 3. Historical estimates and future projections of pollock 
R from 3 climate scenarios and from climate enhanced single- 
and multi-species assessment models with SST covariates on 
Ricker recruitment models (a & ) or Cold Pool, and spring and 
fall zooplankton covariates for R (c & d). 

Figure 4. Change in catch from projections under stationary 
future conditions (set at mean of historical values) for the 
assessment model run without trophic interactions (a & b), 
or with predation mortality (c & d), with recruitment as a 
function of spawning biomass and SST (a & c) or as a function 
of spawning biomass and spring and fall zooplankton 
abundances and cold pool area.
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Figure 1.  Scaled (z-scored) covariate values 
from hindcast and projected ROMS/NPZ 
models. Thicker lines represent low-pass 
filtered trends.


