Co-authors

o&h y
AT OF ©

NOAA
FISHERIES

Trophic amplification of
climate change Impacts

on groundfish species in the
eastern Bering Sea (USA) . ..

— MIROC3.2 — CCCMA
1b) Bottom Temp

Kirstin Holsman

la) Sea Surface Temp

=

g‘iﬁ'y' Q‘-"-‘-“
‘ ‘ f ".'IV’
AV an

« b
IPCC Scenarlo A e /%/ca/ y
AR4ATB L BT Mg,

A
ml‘!;.,_: Y )

A
\7 I "\

Global Climate Models (x 3)
ECHO-G (AR4 A1B)
MIROC3.2 med res. (AR4 A1B)
(GCM3-t47 (AR4 A1B)

2040 -
2040 -

Figure 1. Scaled (z-scored) covariate values
from hindcast and projected ROMS/NPZ
models. Thicker lines represent low-pass
filtered trends.
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CEATTLE was projected forward to 2040, where recruitment in
each projection year was based on |IPCC scenario-driven
ROMS/NPZ future indices.
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projecting climate effects on fishery species.
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