Distance sampling principles T

=1ES

Asetofr ReEdmetods suitd e s tm ating e
abundance and/orde nsity ofmanne mammal. & os- e

] [, Designs Analysis

Set Setl - = Em .=I., anshysis & B9 | BB Hame: |PRD - small - =y depth discoast less knats
Created:  29/10/2007 10:57:15

The basic conce ptinvo les: e

@ =5 1 2 1 DF-small-HZ hist 4 OBS sc

 record distance to all animals detected,
 use the distribution of distances to estimate the

@ 76 1 2 2 D5M-small- sy depth discoast less knots 0441042007 [ Survey

C trave rS e a tra n S e Ct S e a rC h i n g fO r a n i m a I S y EH PRD - small - »y depth dizcoast less knots | 2951042007 Set 1l ﬂ | [1]Mew Survey ﬂ

Createc | # para
alesize 03/10/2007 1

Rur: 07/11/2007 10:23:36

[Crata filker

1 Hiztogram 5 small

probability of detection given distance ("detection =

function"),

 from this the number of animals not detected can be
estimated, and hence the abundance or density of the
population in the study area can also be estimated.
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Program Distance is purpose-built for the design and
analysis of distance sampling surveys. ltis intended to
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be easy to use, with a Windows graphic interface and L
voluminous help. The most recent public release version
of Distance is 5.0
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Covariates influencing detectability in addition to distance
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Estimation of abundance or density using a subset of the data, e.g., geographic strata, species, seasons,

particularly when there are few observations in some of the subsets.

So kton
Conventional solution is stratification: i.e., estimate a separate
detection function for each subset of the data for which we want to
estimate density. However, when there are few observations in a

Spotted dolphin detection probability
as function of group size
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subset, the estimated detection function is unreliable. An alternative
is to assume that the general shape of the detection function is
constant over all subsets of data, but that the scale is a function of
covariates that vary by subset—effectively bending or shrinking the
detection function for each subset (covariate levels). These
covariates levels may include characteristics of the animals being
detected (group size), the observers conducting the surveys (vessel
type or observer identity), or environmental characteristics influential
in the detection process (sea state, sun angle, or time of day). In
each instance, the modelling of the detection function includes
covariates that influence the scale of the detection function, and the
models for one level of the covariate “borrows strength” (i.e.,
enhances the fit) from other levels of the covariates. Details and
examples of this method of estimation can be found in Marques and
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Buckland (2003), Marques and Buckland (2004), and Marques et al.
(2007).

Spotted dolphin detections with 20X binoculars from crow’s nest

Exampl

2 3
Spotted dolphin detections with 20X binoculars from elsewhere

| |
1 2

| |
3 4

Perpendicular distance in nautical miles

Automated survey design

ks ue
Design of line transect surveys is often currently performed using paper and

Analysis of spotted dolphins observed in the Eastern Tropical Pacific (Inter-
American Tropical Tuna Commission) was conducted using the multiple covariate
distance sampling (MCDS) anaysis engine in Distance 5.0. The result
demonstrates the influence of group size upon detectability. All groups (regardless
of size) are more difficult to detect as their distance from the observer increases.
However, the detectability of large groups declines more slowly than large groups.
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pencil employing "algorithms" of debatable quality, possessing unknown
properties. Commonly the design is sketched without any comparison
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among alternative survey designs.
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Distance 5.0 includes a survey design engine, which incorporates a built-in
geographic information system (GIS). Users can enter or import a map of
their study site, and can then specify and contrast various survey designs

(such as randomly spaced parallel transects, equal angle zigzags and equal | -

spaced zigzags). Conventional analysis methods assume that every part of " Suapemmsriaitis [t — | |- St
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the study site has an equal chance of being surveyed ("equal coverage

A

capability within the design engine. This generates many realizations of a
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probability"), and this assumption can be tested using a built-in simulation

design, and calculates the proportion of time each point in the study area is

covered by a transect. Other design properties can also be calculated, such

as the mean, maximum and minimum line length, number of lines and
proportion of time spent transiting between transects ("off effort"). Details of

various survey designs and exploration of the properties of the survey designs derived using

Distance can be found in Strindberg and Buckland (2004 a, b).

After a particular survey design has been identified, the survey design engine ca

single realization of the chosen design. Coordinates for the transect lines can then be

downloaded from the software onto navigational equipment of the survey vessel.

Exampl
Thomas et al. (2007) employ the survey design engine of Distance 5.0 to design
species marine mammal survey of the fjord system known as British Columbia.
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In the past 5 years, Distance 5.0, and its predescessors have been downloaded over 10,000 times. Distance is available free of charge from

our website http://www.ruwpa.st-and.ac.uk/distance/

Training opportunite s

We regularly hold training workshops (both at introductory and advanced levels). Participants from nearly 50 gg -

countries have attended these workshops. Please chech this website for upcoming dates and locations
http://creem.st-and.ac.uk/conferences.php
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Uncertainty in animal detection on transects

ks ue
Although classical distance sampling theory assumes detection of animals on the transect line
is certain, this is not always the case. . B

So kton =

Using a double observer survey design, wherein observers acting independently, observe Photo: Colin S

animals, and a tracking methods is available to ascertain which animals are "duplicates," that

is, seen by both observers. The result is that there are three facets to the problem of estimating animal density, a) a component related to the
probability of seeing some number of animals by both observers, b) a component related to the change in detection probability as a function of
detection distance, and c) a component related to the probabilities of animals detected by observer 1, observer 2, or both observers detecting
animals at distance zero. This combined method of estimation is known as MRDS or mark-recapture distance sampling. More details of this
method are provided in Borchers et al. (2006). Analyses of this type can be performed in Distance 5.0 using the MRDS analysis engine.

An important aspect of the MRDS estimation process is that unmodelled heterogeneity in the detection function can give misleading results.
This is because pooling robustness (an inherent property in conventional distance sampling) is not applicable because detectability is no

longer assumed certain at distance zero.

Exampl

Borchers et al. (2006) analyzed aerial double observer data of crabeater seals in the Antarctic. With 1740 crabeater seal group detections,
roughly equal numbers of groups were detected by observer 1, observer 2, and by both observers. Striking differences were found between the
shapes of detection functions from conventional distance sampling methods (the solid curve shapes below) and those from analysis of the
double-platform data assuming independence between observers' detections (the dashed curves below). This is a consequence of increasing
'unmodelled heterogeneity' with distance from the line: both observers tended to see only very detectable things far away, so duplicate
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Spatial density surface modelling

ksue
Estimation of animal abundance or density from non-random survey designs; or estimation of
abundance in small regions of the study area

So kton
If survey effort is not randomly allocated, then there is no statistical guarantee that the area surveyed is
likely to be representative of the study area in general. Hence, design-based estimators of abundance
are not appropriate. Instead, model-based estimators can be employed. In this circumstance, the
procedure is to model estimated abundance along survey transects using (possibly spatial) covariates.
This modelling approach may also improve precision in estimates by explaining some variability
attributable to modelled covariates. Predictions from the fitted model are available everywhere within
the study region over a prediction grid. Abundance in small regions of the study area can be derived by
summing the predicted abundance in each cell of the prediction grid falling within a region of interest.

Hedley and Buckland (2004a, b) describe the estimation process using what they describe at the
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"count" method, to produce estimates of abundance using this model-based approach. This analysis method is available in a test version of

Distance 6.0.

Exampl

Over the past 15 years, the U.S. National Marine Fisheries Service conducted surveys in the Gulf of Mexico. Data were pooled across all of
those surveys to produce a map of pantropical spotted dolphin abundance in the Gulf of Mexico. The spatial density surface modelling produced
not only point estimates of abundance for cells that comprise the study area (3D panel below), but also using a bootstrap procedure, produced

measures of uncertainty for each of the prediction grid cells (below right).
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Under some situations it may be impossible to produce equal coverage probability in a survey. If conventional estimation techniques are
employed under these conditions, they will produce biased estimates of abundance or density. However, because the survey design engine
computes the coverage probability for all points in the study region, this information can be used to produce unbiased estimates of abundance
or density from surveys with unequal coverage probabilities. This feature will be added to a future version of Distance.

Sim u kton ¢ ngine

Simulation not only of the survey designs, but an area populated with animals, has the potential to explore the
expected precision of proposed designs. Robustness of estimation methods to various patterns in animal
distribution within the study region can also be examined. We are currently seeking sponsors to fund the

addition of this feature into Distance.

Program Distance website http://www.ruwpa.st-and.ac.uk/distance/






