Use of BAS geolocation tags to study northern fur seal (Callorhinus ursinus) winter migrations

Belonovich, Olga1; Andrews, Russel D2; Burkanov, Vladimir N3, 4; Davis, Randall W1; Staniland, Iain J5
(1) Dept. of Wildlife and Fisheries Science, Texas A&M University, College Station, TX, 77843, USA; (2) School of Fisheries and Ocean Sciences, University of Alaska Fairbanks and the Alaska SeaLife Center Seward, Alaska, 99664, USA; (3) Kamchatka Branch of the Pacific Institute of Geography, Petropavlovsk-Kamchatsky, 683000, Russia; (4) National Marine Mammal Laboratory, NMFS, NOAA, Seattle, WA, 98115, USA; (5) British Antarctic Survey, Cambridge, CB3 0ET, UK. - Corresponding author: aizberg@gmail.com

Introduction

Northern fur seal (NFS) (Fig. 1) pup production on the Pribilof Islands (USA) is declining at an annual rate of 6% whereas the Commander Islands (Russia) population remains stable (Ream and Burkanov, 2005; Blokhin et al., 2007). One hypothesized reason for the different population dynamics could be a disparity in winter feeding conditions.

Objectives

❖ To assess the winter foraging grounds of NFS females from Bering Island BAS Geolocation tags (GLS)
❖ To assess the use of GLS in the study of fur seal movements

Methods

Geolocation tags (GLS) tags were attached to 12 adult females on 1 November 2007 on Severno-Zapadnoe rookery (Bering Island, Commander Islands) just before they departed on their annual winter migration. Six of these females were also instrumented with location-only satellite tags (SPOT-5, Wildlife Computers). Seven females were recaptured during July 2008; 2 females were recaptured during July 2009. Five recaptured seals provided concurrent satellite tracking data. Satellite tag positions were filtered based on speed and turning angles using the Douglas filter. GLS light level data was converted to position estimates using BASTrak, TransEdit, and BirdTracker software, and then a speed filter was applied. Satellite tag position error was estimated to be an order of magnitude less than for the GLS tags, so daily GLS positions were compared to the best daily satellite tag position to calculate an average GLS error of 238 ± 132 km. MATLAB programs were used to correct the GLS position data: Daily position estimates were determined from the satellite tag tracks and the GLS data loggers and GLS positions were corrected using the robust regression (Fig. 2).

Results and Discussion

❖ Robust regression smoothing technique effectively reduced the mean error for GLS positions from 238 ± 132 km to 94 ± 77 km.
❖ Most of the seals migrated to the southwest of Bering Island, exploiting both shelf break and oceanic waters. The maximum straight line distance was 2,741 ± 437 km from Severo-Zapadnoe rookery (Fig. 3).
❖ The two females tracked over 2 different winters followed a very similar path in each year (Fig. 4).
❖ GLS loggers can provide acceptable location data that is useful in the analysis of large scale pinniped migration patterns.

References:

Acknowledgments

We are very grateful to Sergey Fomin, Sergey Datakov, Sergey Nikulin, Tatiana Shulezhko, Andrey Stepanov, Olivia Lee, Aleksey Mukhin, Aleksey Altukhov, Ivan Blokhin, Vladimir Verfykin, Vsevolod Afanasiev, and Ayal Anis for their help. We used Maptool at Seaturtle.org and GPS visualizer to create the maps.