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Aleutian Islands 2018 Report Card 
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Region-wide 

‹ The North Pacific Index (NPI) was strongly positive from fall 2017 into 2018 due to the relatively 
high sea level pressure in the region of the Aleutian Low, which was displaced to the northwest, over 
Siberia, and caused persistent warm winds from the southwest. Positive NPI is expected during 
La Niña, but its magnitude was greater than expected. 

‹ The Aleutians Islands region experienced suppressed storminess through fall and winter 2017/2018 
across the region. 

‹ The Alaska Stream appears to have been relatively diffuse on the south side of the eastern 
Aleutian Islands. 

‹ Although the sea surface temperatures cooled in 2018, relative to the 2014–2017 warm 
period, the overall temperature was still warm due to heat retention throughout the water 
column. 
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Figure 1: The winter North Pacific Index time series. * indicates time series updated in 2018. 
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Western Aleutian Islands Ecoregion 2018 
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‹ While sea surface temperature declined relative to 2016, the warm water extended more deeply 
in 2018 than 2016. 

‹ The reproductive success of five planktivorous seabird species at Buldir Island was average to above 
average in 2018, indicating that overall zooplankton availability was sufficient to support 
successful chick-fledging in 2018. 

‹ Forage fish trends as indicated in tufted puffin chick meals have varied over the long term, with episodic 
peaks lasting 1–2 years. In general, sand lance have been absent since 2009, and age-0 gadids have 
not been seen in great abundance since 2006. Tufted puffins experienced reproductive failures in 2017 
and 2018, so there were few forage fish samples. The failures suggest that sufficient forage fish to 
support chick-rearing was limiting in 2017-2018. Squid were the most common prey delivered 
to chicks. 

‹ The pelagic fish foraging guild biomass decreased slightly from 2016 to 2018. The decreasing 
trend was primarily due to declines in Atka mackerel and northern rockfish biomass, as the biomass 
of Pacific ocean perch increased from that in 2016. 

‹ The overall biomass of the fish apex predator foraging guild continued its long term 
decline to the lowest level of the time series, which began in 1991. The largest declines were noted 
in Pacific cod, while Kamchatka and arrowtooth flounder biomasses increased. 

‹ The most recent data available for otters show no trend, in contrast to the steep decline during the 
early 2000s. 

‹ Steller sea lions remain below their long-term mean in this ecoregion, although there has been 
no significant trend in the past 5 years. The 2016 estimate was the lowest in the time series. 

‹ The amount of area trawled has increased since 2012, which was the last year of a dramatic 4-
year decline following measures aimed at increasing protection for Steller sea lions during 2012–2014. 
Also, commercial fishing patterns may reflect recent changes in economics, ownership, and fishing 
effort allocation. 

‹ There are no schools in the western Aleutian Islands ecoregion. 
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Figure 2: The Aleutian Islands ecoregions. 
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Figure 3: Western Aleutian Islands ecoregion indicators. * indicates time series updated in 2018. 



Central Aleutian Islands Ecoregion 2018 
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‹ The pelagic fish foraging guild biomass declined overall from 2016 to 2018. Decreases were seen 
in all species but walleye pollock. 

‹ The slight decrease in the fish apex predator foraging guild biomass from 2016 to 2018 was 
largely driven by arrowtooth and Kamchatka flounder. 

‹ The most recent data available for otters show no trend, in contrast to the steep decline during the 
early 2000s. 

‹ Counts of non-pup Steller sea lions remain below the long term mean although there is no 
significant trend in the past 5 years. 

‹ Both Adak and Atka schools in the central Aleutian Islands have experienced declining 
enrollment over the past 2 years, approaching the 10-student threshold that risks closure of the 
schools, which would have negative impacts on the communities. 

‹ The amount of area trawled has increased since 2012, which was the last year of a dramatic 4-
year decline following measures aimed at increasing protection for Steller sea lions during 2012–2014. 
Also, commercial fishing patterns may reflect recent changes in economics, ownership, and fishing 
effort allocation. 
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Figure 4: Central Aleutian Islands ecoregion indicators. * indicates time series updated in 2018. See 
Figure 3 for legend. 



Eastern Aleutian Islands Ecoregion 2018 
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‹ Relative abundances of gadids and Ammodytes (sand lance) in prey brought back to feed puffin 
chicks have shown opposite trends. Sand lance were above the long-term average in 
2018. Puffins also had high reproductive success, indicating that forage fish were sufficient to support 
chick-rearing. 

‹ Pollock, Atka mackerel, Pacific ocean perch, and northern rockfish all contributed to the increase in 
fish pelagic forager biomass from 2016 to 2018. This represents a gradual increase since the low 
estimate in 2012. 

‹ Fish apex predator foraging guild biomass increased from the low values in 2012. Pacific cod 
and arrowtooth flounder contributed most to the increase. 

‹ There are no available data for otters in the eastern Aleutians ecoregion. 

‹ In contrast to the other ecoregions, non-pup counts of Steller sea lions remained high during 
the last count in 2015. The recent estimates have been above the long-term mean and are continuing 
an increasing trend. Counts were largely stable through the 1990s, but increased at a rate of 3% per 
year between 2000 and 2008. 

‹ School enrollment increased overall in the past 2 years, although there is still an overall 
decrease in the 5-year trend because of the steep decline in enrollment in 2016. The increase in the 
past 2 years is primarily due to Unalaska, whereas the small communities have either closed schools 
(Nikolski) or are at risk of closure (False Pass and Akutan). 

‹ The amount of area trawled increased slightly in 2018 to above the long-term average. 
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Figure 5: Eastern Aleutian Islands ecoregion indicators. * indicates time series updated in 2018. See 
Figure 3 for legend. 
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The primary intent of this assessment is to summarize and synthesize climate, biological, and fishing 
effects on the shelf and slope regions of the Aleutian Islands (AI) from an ecosystem perspective 
and to provide, where possible, an assessment of the possible future effects of climate and fishing 
on ecosystem structure and function. This serves the larger goal of the Ecosystem Status Reports 
(ESRs) to provide ecosystem context for tactical fisheries management decisions. This assessment 
ties together the myriad indicator data into a narrative of the current and likely future ecosystem 
state, including information based on new or unexpected observations that may have implications 
for groundfish management. Report cards are presented at the front of this ESR to provide a 
succinct summary of the state of the ecosystem based on a short list of indicators. Descriptions of 
the report card indicators are in the Ecosystem Indicators section (p. 33) 

The Aleutian Islands ecosystem assessment area 

The Aleutian Islands ecosystem assessment and report card are presented by three ecoregions. The 
ecoregions were defined based upon evidence of significant ecosystem distinction from the adjacent 
ecoregions by a team of ecosystem experts in 2011. The team also concluded that developing an 
assessment of the ecosystem at this regional level would emphasize the variability inherent in this 
large area, which stretches 1900 km from the Alaska Peninsula in the east to the Commander Islands 
in the west. For the purposes of this assessment, however, the western boundary is considered the 
US-Russia border at 170oE. 

The three Aleutian Islands ecoregions are defined from west to east as follows (Figure 6). The 
Western Aleutian Islands ecoregion spans 170o to 177oE. These are the same boundaries as the 
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North Pacific Fishery Council fishery management area 543. This ecoregion was considered to 
be distinct from the neighboring region to the east by primarily northward flow of the Alaska 
Stream through wide and deep passes (Ladd, pers. comm.), with fewer islands relative to the other 
ecoregions. 
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The Central Aleutian Islands ecoregion spans 177oE to 170oW. This area encompasses the North 
Pacific Fishery Council fishery management areas 542 and 541. There was consensus among the 
team that the eastern boundary of this ecoregion occurs at Samalga Pass, which is at 169.5oW, 
but for easier translation to fishery management area, it was agreed that 170oW was a close ap-
proximation. The geometry of the passes between islands differs to the east and west of Samalga 
Pass (at least until Amchitka Pass). In the Central ecoregion the passes are wide, deep and short. 
The Alaska Stream, a shelf-break current, is the predominant source of water (Figure 7). There is 
more vertical mixing as well as bidirectional flow in the passes. This delineation also aligns with 
studies suggesting there is a biological boundary at this point based on differences in chlorophyll, 
zooplankton, fish, seabirds, and marine mammals (Hunt and Stabeno, 2005). 

The Eastern Aleutian Islands ecoregion spans 170oW to False Pass at 164oW. The passes in this 
ecoregion are characteristically narrow, shallow and long, with lateral mixing of water and north-
ward flow. The prominent source is from the Alaska Coastal Current, with a strong freshwater 
component. This area encompasses the NPFMC fishery management areas 518, 519 (EBS) and the 
western half of 610 (GOA). 

Western

Central Eastern

Buldir Island

Samalga 
Pass

False Pass

Aiktak IslandAmchitka 
Pass

Figure 6: The three Aleutian Islands assessment ecoregions. 
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Figure 7: Ocean water circulation in the Aleutians. Currents are indicated with black lines. Passes are 
indicated with white lines. Image from Carol Ladd. 

Current and Recent Ecosystem State 

Most of what we can say about the Aleutians Islands ecosystem is based upon biological trends. 
There are large gaps in knowledge about the local physical processes and, as a result, their impact on 
biological processes. These gaps are largely due to geography. For example, persistent cloudiness had 
precluded obtaining comprehensive satellite-derived data, but this year we include a new contribution 
on satellite-derived sea surface temperature patterns (p. 50). Also, the sheer distances involved in 
surveying the island chain make comparing west-east trends in indicators such as bottom temperature 
difficult because of the difference in timing of oceanographic surveys across the region. Differences in 
survey timing may also affect detection of biological patterns. Integrative biological indicators such 
as fish or sea lion abundances may be responding to physical indicators such as bottom temperature, 
but are less sensitive to survey timing. Also, the extensive nearshore component of the ecosystem, 
narrow shelf relative to the entire ecosystem, as well as strong oceanographic input mean that some 
metrics commonly used as ecosystem indicators in other systems may not be as informative in the 
Aleutians. Therefore, our synthesis of ecosystem indicators necessarily includes speculation. 

The North Pacific atmosphere-ocean system in 2017–2018 was similar to that from 2016–2017, as 
seen in the continuation of largely warm conditions that represent little change from the generally 
warm period that began in 2014. The Pacific Decadal Oscillation index shifted to a neutral state, 
reflecting a broad scale pattern of warmer than average temperature across the North Pacific. While 
the warm temperatures extended deep in the water column, the surface temperatures cooled. The 
broad high sea level pressure pattern over the Aleutians and related suppressed storminess from 
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fall 2017 through winter 2018 likely helped to retain the heat in the water column. The Alaska 
Stream appears to have been relatively diffuse on the south side of the eastern Aleutian Islands. 
Eddy energy has remained low since 2012, indicating little flux of volume, heat, salt, and nutrient 
through Amukta Pass. 
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Overall, the Aleutian ecosystem has shown a response to the recent warm years that has similar 
characteristics to those in the Gulf of Alaska. As the water column and surface temperatures shifted 
to anomalously warm in 2013/2014, the mean size of the copepod community became smaller than 
the long term mean, indicating that smaller-bodied copepod species became relatively abundant 
as is expected (Figure 9). In general, planktivorous seabirds have had fewer reproductive failures 
during these warm years relative to piscivorous seabirds, indicating that zooplankton resources were 
largely sufficient while forage fish were periodically lacking. 

The zooplankton community in the Aleutians is largely dominated by copepods, and the ecosystem 
itself is oceanic in nature. Based on bottom trawl survey data only (which in the eastern Aleutians 
ecoregion includes only the shelf area north of the islands), there is a larger biomass of pelagic 
foragers compared to that of apex predators across the AI. At the ecoregion scale, both the western 
and central Aleutians ecoregions have a larger total fish biomass of pelagic foragers compared to 
that of apex predators, while in the eastern Aleutians ecoregion the largest total biomass alternates 
between apex predators and pelagic foragers. This is consistent with higher reliance on zooplankton 
in the western Aleutians versus more piscivorous and invertivores towards the east. The largest 
total biomass of both apex predators and pelagic foragers is located in the Central Aleutians, the 
region with the largest shelf area down to 500m deep. The lowest apex predator biomass alternates 
between the western and eastern Aleutians whereas that of pelagic foragers is found in the eastern 
Aleutians. For comparison purposes with previous years, the northern portion of the shelf area in 
the eastern Aleutians has historically represented an average of 52% of the pelagic foragers (∼30– 
90%) and 32% on average (∼20–50%) of apex predators. This pattern has been constant since 
1991, though individual species groups fluctuations do not necessarily follow the same behavior. 
Length-weight residuals of groundfish sampled during summer bottom trawl surveys to represent 
fish condition have shown below-average to average values for most pelagic and apex foragers 
ecosystem-wide, possibly indicating poor conditions for groundfish in general. We note however, 
that for Pacific Ocean perch (POP) and northern rockfish, intraspecific competition might be a 
contributing factor, as their abundance has increased and their condition has decreased more than 
that of Atka mackerel and pollock since 2012. Conditions for planktivorous predators may have 
slightly improved this year as discussed in the sections below. 

Total pelagic foragers biomass is slightly under 1.8 million tons over the entire Aleutian archipelago, 
which is very similar to that of 2016, with some species decreasing in the western and central 
ecoregions and increasing in the eastern ecoregion. There is a consistent long term trend whereby 
the proportion of rockfish biomass (Pacific Ocean perch, POP, and northern rockfish shown in 
purple tones in Figure 8) has been consistently increasing compared to that of Atka mackerel 
and pollock combined. What in the early 1990s was a system where two thirds of the pelagic 
foragers biomass was made up of Atka mackerel and pollock (shown in grey tones in Figure 8), is 
now half or even two thirds composed by rockfish. This may cause several minor but consistent 
disruptions in the structure of the system. For example, Atka mackerel and pollock are shallow 
foragers distributed mostly between 100–200m depth, while northern rockfish and POP are found 
in generally deeper waters between 100–300m. This is relevant because they are an important fish 
prey for seabirds (such as for tufted puffins preying upon age-0 rockfish), marine mammals (such as 
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Steller sea lions), and a variety of other fish. Most pelagic piscivorous predators will complement 
their diets with squid and myctophids, however for central place foragers, that implies longer trips 
from their respective colonies and haul outs. 
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Pelagic Foragers: Western AI
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Figure 8: Estimated survey biomasses of fish apex predators and pelagic foraging guilds aggregated by Aleutian Islands ecoregions. 
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Figure 9: From left to right: bottom trawl survey water column temperatures, satellite-derived sea 
surface temperatures, eddy kinetic energy near Amukta Pass, mean copepod community size from the 
Continuous Plankton Recorder in the southern Bering Sea, north of the Aleutian Islands. 

Overall apex predator fish biomass is also very similar this year compared to that of 2016. Both 
Pacific cod and Arrowtooth flounder continue to be the largest component of the apex predator 
guild. The apex predator fish guild can be roughly separated into three trophic preferences: those 
that eat primarily fish, fish and crustaceans/invertebrates or primarily crustaceans and inverte-
brates. Large rockfish and large flatfish eat mostly fish (shown in blue tones in Figure 8), Pacific 
cod and Alaska skates feed approximately equal parts fish and crustaceans (Alaska skate less so) 
(shown in olive green tones), while large sculpins and other skates (shown in brown tones) feed 
primarily on crustaceans and invertebrates. Piscivorous apex predators make up the largest pro-
portion in the eastern Aleutians decreasing towards the western Aleutians, where the shelf is wider 
and there are more apex predators feeding on crustaceans and invertebrates. Pacific cod, being 
able to switch equally between fish and crustacean/invertebrates availability, though shown here 
as an apex predator within fish, is in fact a prey source to a few other fish and marine mammals, 
so fluctuations in its biomass affect both prey and predators as well. This means that perhaps 
more important than the sheer biomass of apex predator fish, is their composition, as several of the 
piscivorous fish consume Atka mackerel and pollock and may be impacted by the larger proportion 
of rockfish in the system. 
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Western Ecoregion In the western ecoregion specifically, the reproductive success of planktivo-
rous auklets, serving as indicators of zooplankton production, has been above average from 2015 to 
2018. Increases from 2017 to 2018 were seen in both crested auklets, which feed their chicks mainly 
euphausiids and copepods, and least auklets, which focus on copepods. Thus, we can speculate 
that sufficient zooplankton were available to support reproductive success. Positive length-weight 
residuals of Atka mackerel and pollock (both feeding on zooplankton) would seem to further sup-
port the good conditions for planktivorous predators in 2018. Forage fish trends as indicated in 
tufted puffin chick meals have varied over the long term. In general, Ammodytes (sand lance) have 
been absent since 2010, and age-0 gadids (pollock and cod) uncommon; neither were observed this 
year. Instead, squid were the most common prey fed to chicks, while hexagrammids (age-0 Atka 
mackerel) were present in average values this year. It is still unknown whether the high number 
of hexagrammids seen in 2013 and 2014 possibly indicated high recruitment in Atka mackerel, as 
80% of the hexagrammids in 2013 and 100% in 2014 were Atka mackerel. Atka mackerel and POP 
drive the biomass trend and on average make up 80% of the pelagic foragers biomass with the rest 
comprised mostly of northern rockfish. POP has been increasing (rebuilding) since 1991, although 
Atka mackerel and northern rockfish decline in 2018 relative to 2016. Steller sea lion non-pup esti-
mates from 2016 are the lowest in the time series. The declining sea lion trends are topics of active 
research on these apex piscivores whose diet consists primarily of commercially-fished species. The 
habitat area disturbed by trawls continued to increase in 2018 following the sea lion protection 
measures that were in effect in 2012–2014. Recent changes in economics, ownership, and fishing 
effort allocation may be contributing to this trend. 
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Central Ecoregion Recent trends in auklet reproductive success in the central ecoregion are 
unknown due to the disruption of the monitored colony in 2008, when the volcano on Kasatochi 
Island erupted and the seabird research field camp and the monitored colonies were covered with 
ash. A suitable replacement indicator has not yet been identified. Forage fish trends as captured by 
puffins are not available from this ecoregion because puffins are not as numerous and nests are not 
monitored regularly. Both fish apex predator and pelagic foraging guild biomasses have decreased 
since the previous trawl survey in 2016. Arrowtooth flounder, POP, Atka mackerel, and northern 
rockfish are contributing to this trend. Recent sea lion estimates are low, but the rate of decline 
has stabilized. School enrollment has declined over the past 2 years, approaching the 10-student 
threshold that risks closure of the schools, which would have negative impacts on the communities. 
The amount of habitat disturbed by trawls was above average, continuing an increasing trend in 
habitat disturbance by trawls after 2011–2014, when habitat recovery estimates following the sea 
lion closures took effect. Also, recent changes in economics, ownership, and fishing effort allocation 
may be contributing to this trend. It is important to keep in mind, however, that the trawlable 
shelf area in the Aleutians in a minor part of the sea floor landscape, as most is quite rocky and 
steep. 

Eastern Ecoregion Planktivorous auklets are not as numerous in the eastern ecoregion as in the 
central and western ecoregion and are not monitored in the eastern ecoregion. However, surface-
foraging storm-petrels have shown consistent reproductive success (while below average for Leach’s 
storm-petrels, reproductive success was over 60%), indicating, that zooplankton resources were 
sufficient to support reproduction. Relative abundances of gadids and Ammodytes (sand lance) 
in prey brought back to feed puffin chicks have shown opposite trends over time. This pattern 
continued in 2018 with above average sand lance and below average (although still plentiful) age-0 

15 



gadids. Hexagrammids comprise a low proportion of chick diets relative to those in the western 
ecoregion. Chick-provisioning patterns suggest puffins are responding to changes in forage fish 
availability, such as providing support for multiple reports of high numbers of age-0 pollock in 
2017. All fish foraging guilds fluctuate largely in this ecoregion which has the lowest total biomass of 
pelagic foragers. However, all pelagic foragers species biomasses increased this year; apex predators 
increased overall. Together these suggest that foraging conditions for fish and birds were largely 
more positive than in previous years. School enrollment had increased in the past 2 years, primarily 
due to schools in the largest community in Unalaska, whereas the small communities have either 
closed schools (Nikolski) or are at risk of closure (False Pass and Akutan). School closure can have 
a destabilizing impact in small communities. 
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This section contains links to all new and updated information contained in this report. The links 
are organized within three sections: Physical and Environmental Trends, Ecosystem Trends, and 
Fishing and Fisheries Trends. 

Physical and Environmental Trends 

North Pacific 

‹ The North Pacific atmospheric-ocean climate system during fall 2017 to summer 2018 was similar to 
that during 2016–2017 (p. 40). 

‹ The prominent sea surface temperature anomalies during 2017-18 tended to be positive, with persistent 
warmth in the subtropical eastern North Pacific Ocean (p. 40). 

‹ A weak La Niña developed during winter 2017–2018 along with a weaker than normal Aleutian Low, 
similar to the previous year (p. 45). 

‹ The Pacific Decadal Oscillation (PDO) was slightly positive during the past year, with a decline to 
near zero in the summer of 2018 reflecting the wide-scale warm pattern across the North Pacific Ocean 
(p. 45). 

‹ The North Pacific Index (NPI) was strongly positive from fall 2017 into 2018 due to the relatively 
high sea level pressure in the region of the Aleutian Low, which was displaced to the northwest, over 
Siberia, and causing persistent warm winds from the southwest over the Bering Sea last winter (p. 
41). 

‹ The North Pacific Gyre Oscillation (NPGO) declined from a small to a large negative value from 2017 
to early 2018, implying that flows in the Alaska portion of the Subarctic Gyre weakened and low 
nitrate levels along Line P extending from Vancouver Island to Station PAPA (p. 45). 

‹ The climate models used for seasonal weather predictions are indicating about a 70% chance of a 
weak-moderate El Niño for the winter of 2018-19, and warmer than normal SSTs in both the western 
and eastern mid-latitude North Pacific in early 2019 (p. 45). 

Aleutian Islands 

‹ The Aleutians Islands region experienced suppressed storminess through fall and winter 2017/2018 
with predominant winds from the southwest (p. 40). 
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The Alaska Stream appears to have been relatively diffuse on the south side of the eastern Aleutian 
Islands (p. 40). 

‹ Eddy energy in the Aleutian Islands region has been low from the fall 2012 through 2018, indicating 
the likelihood of smaller than average fluxes of volume, heat, salt, and nutrient fluxes through Amukta 
Pass (p. 49). 

‹ A new satellite-derived SST indicator presents seasonal anomalies over time in the Aleutian Islands 
ecoregions. There was a general consistency in temperature anomalies within each year for the central 
and eastern Aleutian Island areas, whereas the western Aleutian Island region was more likely to 
diverge from the other areas in the direction of temperature anomaly within a season. The indicator 
shows that summer and winter temperatures were anomalously warm from 2014–2017, then cooled 
during summer 2018 (p. 50). 

‹ Sea surface temperature values were moderately warm from fall 2017 through spring 2018 but then 
cooled to normal during summer 2018 (p. 41). 

‹ The temperature anomaly profiles from the biennial AI bottom trawl survey suggests that there was 
a return to slightly cooler conditions in 2018 relative to 2016, but that 2018 is still amongst the 
warmer years over the survey time series, with warm anomalies penetrating deeper and distributed 
more extensively across the Aleutian archipelago than in 2014 (p. 52). 

Ecosystem Trends 

‹ The Aleutian islands bottom trawl survey of structural epifauna showed variable distributions. Sponges 
are caught in most tows in the AI west of the southern Bering Sea. Abundance of coral in all areas has 
declined since about 1991-1993 surveys and is at generally low levels in all areas, but the frequency 
of occurrence has remained steady. Soft corals occur in relatively few tows, except in the eastern 
Aleutian Islands. Sea anemones are common, but sea pen abundance is low (p. 56). 

‹ In the Bering Sea region north of the Western and Central Aleutian Islands that is sampled by the 
Continuous Plankton Recorder, spring diatom abundances have remained above average 2013–2017 
(p. 60). 

‹ However, copepod community size anomalies have remained negative from 2014–2017 indicating a 
community biased towards smaller species than is typical in this ecosystem (p. 60). 

‹ Jellyfish mean catch per unit effort in the biennial AI bottom trawl survey is typically higher in the 
western and eastern AI than in the central AI. Catches and frequency of occurrence steadily increased 
across the AI from 2012 to 2016, but decreased in 2018 (p. 63). 

‹ Length-weight residuals (a measure of groundfish condition) in 2014 and 2016 were negative for all 
species except arrowtooth flounder in 2014 and southern rock sole in 2016. In 2018, condition continued 
to be strongly negative for Pacific cod, northern rockfish, Pacific Ocean perch and arrowtooth flounder 
(p. 65) 

‹ The depth distributions of rougheye rockfish, Pacific ocean perch, shortraker rockfish, and northern 
rockfish have been shallower in the most recent bottom trawl surveys of the Aleutian Islands. The 
mean spatial distribution of northern rockfish is trending westward. There are no significant trends 
in mean-weighted temperature distributions for any rockfish species (p. 67). 

‹ Benthic communities and other non-target species sampled incidentally in the biennial bottom trawl 
survey. There has been a notable decline in eelpout biomass in the western AI in the last 4 surveys. 
Echinoderms and poachers have been increasing in the eastern AI ecoregion in the last 3 surveys (p. 
71). 
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The overall biomass in the summer bottom trawl survey in 2018 was very similar to that in 2016. The 
largest difference was a decrease in arrowtooth flounder, which occured in the central Aleutian Islands 
ecoregion (p. 8). 

‹ Pacific cod showed a large decrease in the western Aleutian Islands ecoregion, but the overall pattern 
was balanced by increases in the eastern and central Aleutian Islands ecoregion (p. 8). 

‹ The long term trend reflects a continuing shift in the pelagic foraging biomass from that dominated 
by Atka mackerel and pollock to that dominated by rockfish (p. 8) 

‹ In general, seabirds in the Aleutians did not experience widespread failures like they did in the Gulf 
of Alaska during the marine heat wave of the past few years. However many piscivorous seabirds 
did poorly in 2018 at Buldir (western AI) and had mixed success at Aiktak (eastern AI), while 
planktivorous seabirds have remained generally successful. This pattern suggests that zooplankton 
availability was sufficient to support chick-rearing at both colonies, but that forage fish prey were 
insufficient to support chick-rearing at Buldir (p. 73). 

‹ The western AI Steller sea lion adult population decreased rapidly at approximately 7% per year and 
sub-area population trends improved to the east through the western Gulf of Alaska, where the annual 
trend increased approximately 4% per year. Regional trends in pup production are similar to trends 
in non-pup counts, with continued relatively steep declines in the western AI, a less steep decline in 
the central AI, and improvement in the eastern AI (p. 2). 

‹ A new indicator demonstrates that the stability (inverse biomass coefficient of variation) of groundfish 
biomass in the Aleutian Islands bottom trawl survey has been relatively constant from 2010–2018. 
There has been a gradual decrease over this time, but with a non-significant linear trend that is 
influenced by variability in Atka mackerel biomass (p. 76). 

‹ A new indicator tracks fluctuations in the size of groundfish sampled over time by the Aleutian Islands 
bottom trawl survey. The mean length of the groundfish community in 2018 is the highest value over 
the time series, but in general has remained stable over time (p. 77). 

‹ A new indicator tracks the mean life span of the groundfish sampled by the Aleutian Islands bottom 
trawl survey over time. This indicator serves as a proxy for the mean turnover rate of species and 
communities” and is intended to reflect ecosystem stability and resistance to perturbations. The mean 
lifespan in 2018 is above the long term mean, but has been largely stable over the time period with 
some interannual variation due to high biomass estimates of pollock or Atka mackerel (p. 79). 

Fishing and Fisheries Trends 

‹ Since 1993 discards and discard rates of groundfish in federally-managed Alaskan groundfish fisheries 
have generally declined across the trawl pollock, non-pollock trawl, and fixed gear sectors in the 
Aleutian Islands. To date in 2018, discard levels across all sectors appear to be consistent with levels 
during the previous 5-year period (p. 81). 

‹ In 2017, non-target catch of Scyphozoan jellyfish in trawl fisheries in the Aleutian Islands increased 
substantially from that in 2016. The catch of structural epifauna (sponges, corals, and bryzoans) is 
variable and was the third highest in 2017. The catch of assorted invertebrates (mainly seastars) has 
been level from 2015–2017 (p. 84). 

‹ The incidental catch of seabirds in Aleutian Islands groundfish fisheries in 2017 was the highest estimate 
in the 2007–2017 time series. This was primarily due to a large increase in the numbers of shearwaters 
caught (p. 86). 

‹ With the Arctic FMP closure included, almost 65% of the U.S. EEZ of Alaska is closed to bottom 
trawling (p. 90). 
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‹ At present, no Bering Sea/Aleutian Islands groundfish stock or stock complex were subjected to 
overfishing, known to be overfished, or known to be approaching an overfished condition (p. 96). 
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‹ The percent of area disturbed due to commercial fishing interactions (pelagic and non-pelagic trawl, 
longline, and pot) has decreased slightly or remained steady in the Aleutian Islands (p. 92). 

‹ Landings (pounds) are used in a new indicator to characterize commercial seafood production. Land-
ings in the Aleutian Islands are primarily composed of pelagic foragers and apex predators. Atka 
mackerel dominate the pelagic forager catch. Landings of apex predators decreased in 2011 due to a 
decrease in Pacific cod catches (p. 101). 

‹ Subsistence salmon harvest in the eastern Aleutian Islands has varied over time, but has been declining 
in the central Aleutian Islands, with none reported to have been caught in the most recent year, 2016. 
Subsistence halibut catches have also been generally declining since 2004, but this trend may be related 
to subsistence survey methodology (p. 103). 

‹ Economic values of 5 functional groups (apex predators, benthic foragers, motile epifauna, pelagic 
foragers, and salmonids) are presented in a new indicator. Ex-vessel values have been increasing for 
pelagic foragers since 2010 primarily due to Atka mackerel and rockfish and decreasing for Pacific cod. 
First-wholesale value shows similar trends. Contrary to the Gulf of Alaska and Eastern Bering Sea, 
the first-wholesale total catch unit value in the Aleutian Islands has an increasing trend since 2009, 
with the value in 2017 being close to the all-time high of 2011–2012 (p. 106). 

‹ Unemployment rates in Aleutian Islands fishing communities from 1990 to 2017 were lower than state 
and national rates, reflecting stability in the commercial fishing and seafood processing industries (p. 
110). 

‹ As of 2017 the total population including all Aleutian Island communities was 5,755 people. The 
eastern AI has had the most steady population increase between 1880 and 2015, whereas the central 
and western AI experienced fluctuations. The western AI has had no residents wince 2011 (p. 114). 

‹ While Unalaska schools in the eastern Aleutian Islands have maintained relatively stable enrollment 
since 1996, Nikolski, Akutan, and False Pass have diminished dramatically and are no longer viable. 
Both Adak and Atka schools in the central Aleutian Islands have experienced declining enrollment (p. 
117). 
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General Introduction and Background 

The goals of the Ecosystem Status Reports are to (1) provide stronger links between ecosystem research and 
fishery management and to (2) spur new understanding of the connections between ecosystem components 
by bringing together the results of diverse research efforts into one document. Beginning in 2016, we split 
the report into four separate documents, one for the Gulf of Alaska, Aleutian Islands, eastern Bering Sea, 
and the Arctic1 . This year, we present updated reports for the Gulf of Alaska, Aleutian Islands, and eastern 
Bering Sea. Each report contains four main sections: 

‹ Report Card(s) 

‹ Ecosystem Assessment 

‹ Executive Summary 

‹ Ecosystem Indicators 

The purpose of the first section, the Report Card(s), is to summarize the status of the top indicators selected 
by teams of ecosystem experts to best represent each ecosystem. Time series of indicators are presented 
in figures formatted similarly to enable comparisons across indicators. Recent trends in climate and the 
physical environment, ecosystems, and fishing and fisheries are highlighted in bulleted lists. The selected list 
of indicators is intended to be revisited regularly. The eastern Bering Sea indicators were selected in 2010 
and will be updated as part of the Fishery Ecosystem Plan currently being developed. The Aleutian Islands 
indicators were selected in 2011. The Gulf of Alaska indicators were selected in 2015. 

The purpose of the second section, the Ecosystem Assessment, is to synthesize historical climate and fishing 
effects on Alaskan marine ecosystems using information from the Ecosystem Status and Management Indi-
cators section and stock assessment reports. An ongoing goal is to produce ecosystem assessments utilizing a 
blend of data analysis and modeling to clearly communicate the current status and possible future directions 
of ecosystems. In 2017 we expanded the Fishing and Human Dimensions section to more broadly reflect 
aspects of our role in the ecosystem. In doing so, we organized this new section around a proposed set of 
ecosystem-scale objectives derived from U.S. legislation and current management practices. 

The purpose of the third section, the Executive Summary, is to provide a concise summary of new or updated 
information contained in each report. Page links to sections with more detail are provided. 

The purpose of the fourth section, Ecosystem Indicators, is to provide detailed information and updates 
on the status and trends of ecosystem components. The indicators are broadly grouped into Ecosystem 
Status Indicators, organized by trophic level, and Fishing and Human Dimensions Indicators, organized 
around objective categories derived from U.S. legislation and current management practices. Descriptions 
of the Report Card indicators and “Noteworthy” items that capture unique occurrences are highlighted at 
the beginning. Indicators are also intended to track performance in meeting the stated ecosystem-based 
management goals of the NPFMC, which are: 

1The Arctic report is under development 
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1. Maintain biodiversity consistent with natural evolutionary and ecological processes, including dynamic 
change and variability 
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2. Maintain and restore habitats essential for fish and their prey 

3. Maintain system sustainability and sustainable yields for human consumption and non-extractive uses 

4. Maintain the concept that humans are components of the ecosystem 

History of the ESRs Since 1995, the North Pacific Fishery Management Councils (NPFMC) Ground-
fish Plan Teams have prepared a separate Ecosystem Status (formerly Considerations) Report within the 
annual SAFE report. Each new Ecosystem Status Report provides updates and new information to supple-
ment the original report. The original 1995 report presented a compendium of general information on the 
Gulf of Alaska, Bering Sea, and Aleutian Island ecosystems as well as a general discussion of ecosystem-
based management. The 1996 edition provided additional information on biological features of the North 
Pacific, and highlighted the effects of bycatch and discards on the ecosystem. The 1997 edition provided a re-
view of ecosystem-based management literature and ongoing ecosystem research, and provided supplemental 
information on seabirds and marine mammals. The 1998 edition provided information on the precaution-
ary approach, essential fish habitat, effects of fishing gear on habitat, El Niño, local knowledge, and other 
ecosystem information. The 1999 edition again gave updates on new trends in ecosystem-based management, 
essential fish habitat, research on effects of fishing gear on seafloor habitat, marine protected areas, seabirds 
and marine mammals, oceanographic changes in 1997/98, and local knowledge. 

In 1999, a proposal came forward to enhance the Ecosystem Status Report by including more information 
on indicators of ecosystem status and trends and more ecosystem-based management performance measures. 
The purpose of this enhancement was to accomplish several goals: 

1. Track ecosystem-based management efforts and their efficacy 

2. Track changes in the ecosystem that are not easily incorporated into single-species assessments 

3. Bring results from ecosystem research efforts to the attention of stock assessment scientists and fishery 
managers, 

4. Provide a stronger link between ecosystem research and fishery management 

5. Provide an assessment of the past, present, and future role of climate and humans in influencing 
ecosystem status and trends 

Each year since 1999, the Ecosystem Status Reports have included some new contributions and will continue 
to evolve as new information becomes available. Evaluation of the meaning of observed changes should be 
in the context of how each indicator relates to a particular ecosystem component. For example, particular 
oceanographic conditions, such as bottom temperature increases, might be favorable to some species but not 
for others. Evaluations should follow an analysis framework such as that provided in the draft Programmatic 
Groundfish Fishery Environmental Impact Statement that links indicators to particular effects on ecosystem 
components. 

In 2002, stock assessment scientists began using indicators contained in this report to systematically assess 
ecosystem factors such as climate, predators, prey, and habitat that might affect a particular stock. In-
formation regarding a particular fishery’s catch, bycatch, and temporal/spatial distribution can be used to 
assess possible impacts of that fishery on the ecosystem. Indicators of concern can be highlighted within 
each assessment and can be used by the Groundfish Plan Teams and the Council to justify modification of 
allowable biological catch (ABC) recommendations or time/space allocations of catch. 

We initiated a regional approach to the ESR in 2010 and presented a new ecosystem assessment for the eastern 
Bering Sea. In 2011, we followed the same approach and presented a new assessment for the Aleutian Islands 
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based on a similar format to that of the eastern Bering Sea. In 2012, we provided a preliminary ecosystem 
assessment on the Arctic. Our intent was to provide an overview of general Arctic ecosystem information 
that may form the basis for more comprehensive future Arctic ecosystem assessments. In 2015, we presented 
a new Gulf of Alaska report card and assessment, which was further divided into Western and Eastern Gulf 
of Alaska report cards beginning in 2016. This was also the year that the previous Alaska-wide ESR was 
split into four separate report, one for the Gulf of Alaska, Aleutian Islands, eastern Bering Sea, and the 
Arctic2 . 

The eastern Bering Sea and Aleutian Islands ecosystem assessments were based on additional refinements 
contributed by Ecosystem Synthesis Teams. For these assessments, the teams focused on a subset of broad, 
community-level indicators to determine the current state and likely future trends of ecosystem productivity 
in the EBS and ecosystem variability in the Aleutian Islands. The teams also selected indicators that reflect 
trends in non-fishery apex predators and maintaining a sustainable species mix in the harvest as well as 
changes to catch diversity and variability. Indicators for the Gulf of Alaska report card and assessment were 
also selected by a team of experts, via an online survey first, then refined in an in-person workshop. 

Originally, contributors to the Ecosystem Status Reports were asked to provide a description of their con-
tributed index/information, summarize the historical trends and current status of the index, and identify 
potential factors causing those trends. Beginning in 2009, contributors were also asked to describe why 
the index is important to groundfish fishery management and implications of index trends. In particular, 
contributors were asked to briefly address implications or impacts of the observed trends on the ecosystem 
or ecosystem components, what the trends mean and why are they important, and how the information can 
be used to inform groundfish management decisions. Answers to these types of questions will help provide 
a “heads-up” for developing management responses and research priorities. 

This report represents much of the first three steps in Alaska’s IEA: defining ecosystem goals, developing 
indicators, and assessing the ecosystems (Figure 10). The primary stakeholders in this case are the North 
Pacific Fishery Management Council. Research and development of risk analyses and management strategies 
is ongoing and will be referenced or included as possible. 

Figure 10: The IEA (integrated ecosystem assessment) process. 

2The Arctic report is under development 
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It was requested that contributors to the Ecosystem Status Reports provide actual time series data or make 
them available electronically. The Ecosystem Status Reports and data for many of the time series presented 
within are available online at: http://access.afsc.noaa.gov/reem/ecoweb/index.php. These reports 
and data will also be available through a new NOAA-wide IEA website in early 2019. 
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Past reports and all groundfish stock assessments are available at: http://www.afsc.noaa.gov/refm/ 
stocks/assessments.htm 

If you wish to obtain a copy of an Ecosystem Considerations report version prior to 2000, please contact the 
Council office (907) 271-2809. 
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Report Card Indicator Descriptions 

The suite of indicators that form the basis for the Aleutian Islands Report Cards was selected to provide 
a comprehensive view of the Aleutian Island ecosystem reflecting across trophic levels from the physical 
environment to top predators and humans, as well as both the nearshore and offshore. Ideally, they could 
be regularly updatable across all ecoregions (Western, Central and Eastern), thereby characterizing a global 
attribute with local conditions. Although a single suite of indicators were chosen for the entire ecosystem, 
not all are available or applicable in each of the three ecoregions. The final selection reflected the limitations 
of available data sets for the Aleutian Islands ecosystem. 

1. Winter North Pacific Index anomaly relative to the 1961–2000 mean 

2. Reproductive anomalies of planktivorous least auklet and crested auklets as indicators of zooplankton 
productivity 

3. Proportions of Ammodytes, gadids, and hexagrammids in tufted puffin chick diets 

4. Apex predator and pelagic forager fish biomass indices 

5. Sea otter counts 

6. Steller sea lion non pup counts (juveniles and adults) 

7. Percent of shelf <500m deep trawled 

8. K-12 enrollment in Aleutian Islands schools 

Winter North Pacific Index The North Pacific Index (Trenberth and Hurrell, 1994), the area 
weighted mean sea level pressure over the region 30o–65oN, 160oE–140oW, is a widely used measure of 
the intensity of the Aleutian Low. A negative winter (November–March) NPI anomaly implies a strong 
Aleutian Low and generally stormier conditions. It has been suggested that correlations between a strong 
Aleutian Low and decreased seabird productivity in the Aleutian Islands may be due to decreased prey 
(zooplankton) availability (Bond et al., 2011). The winter index is the average NPI from November through 
March (year of January), and the anomalies are normalized by the mean (8.65) and standard deviation (2.23) 
for 1961–2000. 

Contact: nick.bond@noaa.gov 

Reproductive anomalies of planktivorous least auklet and crested auklets Least auklets 
(Aethia pusilla) and crested auklets (A. cristatella) are small, abundant seabirds that nest in the Aleutian 
Islands. The USFWS stations field biologists to monitor auklet chick diets and reproductive success annually 
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at Buldir Island and less frequently at other islands on which they occur. Both species are planktivorous 
and dive to capture their prey. Least auklet chick diets are mainly composed of Neocalanus cristatus, N. 
plumchrus, and N. flemingeri. Crested auklet chick diets consist of mainly Euphausiacea and N. cristatus. 
Due to the lack of time series of direct measurements of zooplankton in the Aleutian Islands, the team 
selected reproductive anomalies of least and crested auklets as indicators of copepod and euphausiid abun-
dance, respectively. Reproductive anomalies were selected as the metric of interest instead of chick diets 
because reproductive success is an integrative indicator of ecosystem productivity and forage for planktivo-
rous commercially-fished species. 

Reproductive success is defined as the ratio of number of nest sites with a fledged chick to the number of nest 
sites with eggs. In the Western ecoregion, reproductive success of least and crested auklets were recorded 
annually at Buldir Island from 1988-2010 with the exception of 1989 and 1999. In the Central ecoregion, 
reproductive success was monitored annually at Kasatochi Island from 1996-2007. In 2008 a volcanic eruption 
covered the monitored colony in ash, disrupting breeding. It is unknown when auklets will nest there again 
and if so, whether observations will continue. Data were extracted from reports produced by the Alaska 
Maritime National Wildlife Refuge. 

Contact: heather renner@fws.gov 

Proportions of hexagrammids, gadids, and Ammodytes in tufted puffin chick diets 
Tufted puffins (Fratercula cirrhata) are medium-sized diving seabirds that nest in varying densities through-
out the Aleutians. The USFWS stations field biologists to monitor puffin chick diets annually at Buldir and 
Aiktak Islands (Figure 6) and less frequently at other Aleutian islands on which they occur. Puffins carry 
multiple prey items in their bills when they return to their colonies to feed their chicks. Forage fish and 
squid comprise most of puffin chick diets. In the absence of direct measures of forage fish abundance, time 
series of percent composition of hexagrammids, gadids, and Ammodytes in puffin chick meals were selected 
as indicators of forage fish recruitment and system-wide productivity. Values are the percentage of total 
individual prey items comprised by each prey item identified in the field or lab. 

Contact: heather renner@fws.gov 

Apex predator and pelagic forager fish biomass indices We present two foraging guilds to 
indicate the status and trends for fish in the Aleutian Islands: apex predators and pelagic foragers. Each is 
described in detail below. This guild analysis was based on the time series available as part of the NOAA 
summer bottom trawl survey for the Aleutian Islands (Western and Central ecoregions) and the Aleutian 
Islands and Gulf of Alaska combined (Eastern ecoregion). These two guilds are based on the aggregation 
of Aleutian species by trophic role, habitat and physiological status. The species included in each guild are 
listed in Table 1. 

Time series for the Western and Central ecoregions are based on data collected from the AI bottom trawl 
survey. The Eastern ecoregion time series is a composite of the Aleutian Islands survey, which samples the 
northern portion of the islands, and the Gulf of Alaska survey, which samples the southern portion. Since 
surveys in these two areas are conducted in different years, the biomass estimates represent the closest pair 
of years pooled together to get a total biomass estimate for the shelf region (0–500m). This time series 
excludes deep-water species such as sablefish and grenadiers, as most are found deeper than the trawl survey 
samples. The Team acknowledges that these would be good to include, but that the trawl survey does not 
sample them well. 

Contact: ivonne.ortiz@noaa.gov 
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Table 1: Species included in foraging guild-based fish biomass indices for the Aleutian Islands 

Fish Apex Predators Pelagic Fish Foragers 

Pacfic cod Atka mackerel 
Pacific halibut Northern Rockfish 
Arrowtooth flounder Pacific ocean perch 
Kamchatka flounder Walleye pollock 
Rougheye rockfish 
Blackspotted rockfish 
Large sculpins 
Skates 

Sea otter counts Sea otters (Enhydra lutris) counts were selected as a representative of the nearshore 
Aleutian environment. The >300 islands which make up the Aleutian chain provide extensive nearshore 
habitat. Sea otters are an integral component of the coastal ecosystems in which they occur. Sea otter 
predation limits the distribution and abundance of their benthic invertebrate prey, in particular herbivorous 
sea urchins. Otter-induced urchin declines increase the distribution and abundance of kelp in Alaska (Estes 
and Duggins, 1995) and in other areas of their range (Breen et al., 1982; Kvitek et al., 1998). This trophic 
cascade initiated by sea otters has indirect effects on other species and processes. Kelp forests are more 
productive than habitat without kelp (a.k.a. “sea urchin barrens”), fixing 3-4 times more organic carbon 
through photosynthesis (Duggins et al., 1989). This increased primary production results in increased growth 
and population size of consumers such as mussels and barnacles (Duggins et al., 1989). Rock greenling (Hex-
agrammos lagocephalus), a common fish of the kelp forests of the Aleutian Islands, are an order of magnitude 
more abundant in kelp forests than in sea urchin barrens (Reisewitz et al., 2006). Kelp forests likely function 
as nearshore habitat for other Aleutian Islands fish, such as the related Atka mackerel (Hexamgrammos 
monopterygius). Sea otter impacts on kelp forests also influence the behavior and foraging ecology of other 
coastal species such as glaucous-winged gulls (Irons et al., 1986) and bald eagles (Anthony et al., 2008). 

Sea otter survey methods are detailed in Doroff et al. Doroff et al. (2003). Skiff-based surveys of sea otters 
were conducted intermittently at Amchitka Island, Kiska and Little Kiska Islands, Attu Island, Agattu 
Island, Rat Island and the Semichi Islands when viewing conditions were good to excellent (Beaufort sea 
state of 1-2, and .1 km of clear visibility at sea level). Two or more observers counted sea otters from a 5.2m 
skiff as it was run parallel to shore along the outer margins of kelp (Alaria fistulosa) beds at 15–22 km/h. 
Sea otters were counted with the unaided eye, using binoculars to confirm sightings or to count animals in 
large groups. The shoreline of each island was divided into contiguous segments, each 3–10 km in length 
and separated by distinctive topographic features (e.g., prominent points of land). Counts were recorded 
separately for each section. Reported values are mean densities, calculated as otter counts per km surveyed 
averaged across islands in each ecoregion. 

Contributed by Tim Tinker, formerly of USGS 

Steller sea lion non pup counts Counts of adult and juvenile Steller sea lions (Eumetopias jubatus) 
are used in the Aleutian Island ecosystem assessment to represent the status of an apex piscivorous predator 
whose diet consists primarily of commercially-fished species. The Steller sea lion inhabits coastal regions of 
the North Pacific Ocean, breeding in summer on terrestrial rookeries located from California north throughout 
the Gulf of Alaska, the eastern Bering Sea, the Aleutian Islands, Kamchatka Peninsula, Sea of Okhotsk, and 
the Kuril Islands (NMFS, 2010). The Steller sea lion is the world’s largest member of the Otariidae family of 
pinnipeds. On average, Steller sea lions consume 6–10% of their body weight per day, but during lactation, 
energy intake by adult females may increase by as much as 3-fold (Keyes, 1968; Winship et al., 2002; Williams, 
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2005). Steller sea lions are generalist predators and consume a wide variety of fish and cephalopods in habitats 
ranging from nearshore demersal to offshore epi-pelagic, with local diets reflecting the species composition 
of the local fish community (Pitcher and Fay, 1982; Riemer and Brown, 1997; Sinclair and Zeppelin, 2002; 
Waite and Burkanov, 2006; Trites et al., 2007; McKenzie and Wynne, 2008; Fritz and Hinckley, 2005). In 
the Aleutian Islands, the diet consists largely of Atka mackerel, followed by salmon, cephalopods, Pacific 
cod, sculpins and walleye pollock (Sinclair and Zeppelin, 2002). Unlike phocid pinnipeds, otariids do not 
have large blubber (energy) stores, and as a consequence, require reliable access to predictable, local prey 
aggregations to thrive (Williams, 2005; Sigler et al., 2009). 
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Status and trends of Steller sea lion populations in Alaska are assessed using aerial photographic surveys 
of a series of “trend” terrestrial haul-outs and rookeries that have been consistently surveyed each summer 
breeding season, when the proportion of animals hauled out is the highest during the year (Sease and 
York, 2003). Since 2004, NMFS has used high-resolution vertical photography (computer-controlled camera 
mounted in the belly of the plane) in its sea lion surveys in Alaska. This replaced the oblique, hand-
held photographic techniques used from the first surveys in the 1960s and 1970s through 2002. Counts 
from vertical high resolution photographs were found to be 3.6% higher than those from oblique photos, 
necessitating the use of a correction factor to correctly compare recent counts with the rest of the time series 
(Fritz and Hinckley, 2005). Trend sites include the vast majority (>90%) of animals observed in each survey. 
Adults and juvenile (non-pup) numbers used for population trend assessment are sums of counts at trend 
sites within sub-areas or across the range of the western DPS in Alaska (NMFS, 2010). Replicate surveys 
conducted in the summers of 1992 and 1994 indicated that sub-area trend site counts of non-pups are stable 
within each breeding season (coefficients of variation of ∼5%; NMFS, unpublished data). 

In our Aleutian Island ecosystem assessment, counts of adult and juvenile Steller sea lions at trend sites 
are used to indicate of the “health” of apex piscivores whose diet consists primarily of commercially-fished 
species. The survey sites used in the assessment are: 

‹ Western (172-177oE; 10 sites in the Near Island group and Buldir west of Kiska), 

‹ Central (177oE to ∼170oW; 62 sites in the Rat, Delarof, and Andreanof Island groups, plus the Islands 
of Four Mountains), and 

‹ Eastern ecoregions (163-170oW; 30 sites in the Fox and Krenitzen Islands, on Unimak Island, and on 
and near Amak Island in the southeastern Bering Sea) 

Contact: kathryn.sweeney@noaa.gov 

Habitat disturbance from trawls This new indicator uses output from the Fishing Effects (FE) 
model to estimate the habitat reduction of geological and biological features over the Bering Sea domain, 
utilizing spatially-explicit VMS data. The effects are cumulative, incorporating both estimated recovery 
time and disturbance. The time series for this indicator is available since 2003, when widespread VMS data 
became available. The monthly value in September is used as an annual indicator. 

Contact: john.v.olson@noaa.gov 

K-12 enrollment in Aleutian Islands schools The number of children enrolled in schools was 
selected as an indicator of vibrant, sustainable communities in the Aleutian Islands ecosystem. Community 
residents are closely tied to the ecosystem through sense of place and daily experience and activity. Enroll-
ment statistics for kindergarten through twelfth (K–12) grades by school and region were compiled for the 
years 1996 through 2014 (http://www.eed.state.ak.us/stats/). School enrollment numbers fluctuate 
widely and serve to highlight the difficulties in maintaining sustainable communities within the Aleutian 
Islands ecosystem. 

36 

http://www.eed.state.ak.us/stats
mailto:john.v.olson@noaa.gov
mailto:kathryn.sweeney@noaa.gov


Contact: sarah.wise@noaa.gov 
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Noteworthy (formerly Hot Topics) 

This section replaces the previously-named Hot Topics. We include information here that is deemed of 
relevance to ecosystem considerations of fisheries managers, but does not fit our typical indicator format. 
Information included here is often new, a one-time event, qualitative, or some other type of non-standard 
ecosystem indicator. 

Federal fishery changes in the Aleutian Islands 

Earlier in April of 2018, the NPFMC created a Purpose and Need statement to modify Amendment 113 
to the BSAI FMP, which under certain conditions sets aside 5,000 mt exclusively for harvest by vessels 
participating in directed fishing for AI Pacific cod and delivering their catch for processing to AI shoreplants 
west of 170oW from January 1 through March 15 (mainly Adak). At issue was the February 28 deadline 
by which 1,000 mt had to be fished in order to lock the 5,000 mt set aside. Vessels caught a portion and 
delivered it to processors other than the AI shoreplant, effectively triggering the closure of all the federal 
Pacific cod catcher vessel sectors (except jig gear) for directed fishing in the A season on the BSAI region 
on February 11. A resolution is expected on December 2018. 

Following numerous ownership changes since 1999, the Adak shoreplant reopened in 2017 and continued to 
ship live golden King crab to Shanghai in 2018 . 

Contributed by Ivonne Ortiz 

Local Environmental (LEO) Network 

The NMFS AFSC is interested in documenting and learning from citizen science observations that may 
be incorporated into Ecosystem Status Reports (ESRs). We identified the LEO Network as a potential 
platform for tracking these observations in the 2017 ESR and were encouraged by the Council and SSC to 
continue exploring the utilization of this framework in future reports. Other citizen science efforts exist in 
Alaska, but to our knowledge these efforts are mostly project specific (e.g., bird spotting and identification) 
or community specific. 

The LEO Network was launched in 2012 by the Alaska Native Tribal Health Consortium (ANTHC) as a 
tool for local observers in the Arctic to share information about climate and other drivers of environmental 
change (see: https://www.leonetwork.org/en/docs/about/about). Anyone may join the network and provide 
observations, and the network now spans the globe. Consultants with relevant expertise often, but not 
always, review the observations and provide feedback. The observations are of unusual environmental events 
or notable environmental changes, reported by geographic location and date, and classified by relevant 
category (or multiple relevant categories) such as weather, land, fish, sea mammals, ocean/sea, etc. 

Figure 11 shows LEO Network observations from January 1, 2017 to August 1, 2018 in the Aleutian Islands 
(AI) LME with the frequency by category. These categories are based on analysis of the 7 total observations 
in 2017 and 2018 (through August 1st) in the AI and are not limited to the marine environment. The 
observations in Figure 12 were made in one community. 

In response to the Council’s and SSC’s previous comments on the use of LEO Network observations in 
this report, AFSC is currently developing a LEO Network project to solicit observations from community 
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Figure 11: LEO Network Observations in Alaska for 2017 and 2018 (through August 1st), source: 
https://www.leonetwork.org. 

members on specific ecological questions. Alaska State agencies, non-profit organizations, universities, and 
U.S. federal agencies have similarly developed projects on the network to track observations specific to their 
area of interest, e.g., weather events, fish pathology, subsistence harvests, etc. AFSC is also actively pursuing 
opportunities to examine ways of incorporating local and traditional knowledge into fisheries management in 
the North Pacific with the Councils Bering Sea Fishery Ecosystem Plan and Social Science Planning Team 
and through targeted research efforts. 

Contributed by Marysia Szymkowiak 

38 

http:https://www.leonetwork.org


December 2018Aleutian Islands ecosystem status report

NPFMC Bering Sea and Aleutian Islands SAFE

Figure 12: Distribution of 2017 and 2018 (through August 1st) LEO Network Observations in one AI 
community. 
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Indicators presented in this section are intended to provide detailed information and updates on the status 
and trends of ecosystem components. Older contributions that have not been updated are excluded from 
this edition of the report. Please see archived versions available at: http://access.afsc.noaa.gov/reem/ 
ecoweb/index.php 

Physical Environment 

North Pacific Climate Overview 

Contributed by Nick Bond (UW/JISAO) 
NOAA/PMEL, Building 3, 7600 Sand Point Way NE, Seattle, WA 98115-6349 
Contact: nicholas.bond@noaa.gov 
Last updated: August 2018 

Summary: The state of the North Pacific atmosphere-ocean system during 2017-2018 was rather similar to 
that during 2016-17. Both winters featured La Niña and weaker than normal Aleutian lows (positive sea level 
pressure, SLP anomalies). The more prominent sea surface temperature (SST) anomalies during 2017-18 
tended to be in the positive sense, with persistent warmth in the subtropical eastern North Pacific, increasing 
positive anomalies in the Bering Sea, and the expansion of warm waters off the east coast of Asia. The 
Pacific Decadal Oscillation (PDO) was slightly positive during the past year, with a decline to near zero in 
the summer of 2018. The climate models used for seasonal weather predictions are indicating about a 70% 
chance of a weak-moderate El Niño for the winter of 2018-19, and warmer than normal SSTs in both the 
western and eastern mid-latitude North Pacific in early 2019. 

Regional Highlights: 

Arctic. The winter of 2017/18 was relatively warm in the Arctic, and included an extreme “heat wave” (for 
the season) in the central Arctic during February. The Arctic’s maximum ice extent in mid-March 2018 was 
the 2nd lowest on record. On the other hand, the decline in sea ice coverage during the late spring and early 
summer of 2018 was on the slow side, primarily in association with relatively low SLP in the central Arctic 
and cool and cloudy weather. The west winds accompanying this circulation pattern helped maintain a wide 
band of ice near the coast east of Pt. Barrow. Relatively rapid losses in sea ice concentrations and coverage 
occurred here in late July 2018. The edge of the pack ice in the Chukchi Sea was well north of its usual 
position during the summer of 2018. At the time of this writing, it appears that the minimum ice extent 
for the Arctic as a whole will be well below of climatological norms, but more akin to the years of 2013 and 
2014 rather than the extreme minimum ice cover year of 2012. 

Bering Sea. The Bering Sea had the least amount of sea ice in the observational record back to 1979. This 
can be attributed to the delayed start of winter (Being Strait was still open on 1 January) and then very 
mild temperatures with strong winds from the southwest, particularly in February 2018. An important 
consequence was a cold pool in summer 2018 of exceedingly small areal extent. The weather during summer 
2018 was stormier than usual on the southeast Bering Sea shelf; at the time of this writing it is unknown 
if those conditions helped sustain primary production later into the warm season than usual. In the region 
of the M2 mooring the thermal stratification during summer 2018 was somewhat less than observed during 
recent years; the vertically integrated heat content was the second greatest on record, topped by 2016. 

Alaska Peninsula and Aleutian Islands. The weather of this region included suppressed storminess during 
the fall of 2017 and the following winter of 2017/18. The regional wind anomalies were from the southwest in 
an overall sense. Based on synthetic data from NOAA’s Global Ocean Data Assimilation System (GODAS), 

40 

mailto:nicholas.bond@noaa.gov
http://access.afsc.noaa.gov/reem


the Alaska Stream appears to have been relatively diffuse, as opposed to concentrated into a narrower, high 
velocity flow, on the south side of the eastern Aleutian Islands. The eddy activity in this region was on the 
low side (p. 49). 
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Gulf of Alaska. The weather of the coastal GOA featured warmer than normal air temperatures from late fall 
2017 into winter and then again in the following summer of 2018. There was generally less precipitation than 
usual in the coastal watersheds of the eastern GOA from winter into summer 2018. The freshwater runoff in 
this region appears to have been enhanced during the winter of 2017/18 and suppressed during the spring 
of 2018. The GOA coastal winds anomalies were in a clockwise sense during the winter of 2017/18; they 
were still in the downwelling-favorable sense, but to a lesser extent than normal. These winds were reflected 
in the surface currents estimated with NOAA’s Ocean Surface Current Simulator (OSCURS), which tended 
to indicate relatively weak south to north flow in the eastern GOA. More on this subject is provided in the 
Ocean Surface Currents PAPA Trajectory Index (see Gulf of Alaska Ecosystem Status Report). 

West Coast of Lower 48. This region experienced generally warmer than normal ocean temperatures from 
late 2017 into 2018 followed by cooling in the north relative to seasonal norms, and continued warmth south of 
Pt. Conception. The winter of 2017/18 was wetter and slightly cooler than normal in the Pacific Northwest, 
and relatively warm and dry in California. The abundant snowpack in the Pacific Northwest melted rapidly 
in May in association with unusually warm weather. The coastal wind anomalies were upwelling-favorable 
for the states of Oregon and Washington during the late spring and early summer raising concerns about 
hypoxia developing to a greater extent than usual. Many streams in the Pacific Northwest had above normal 
temperatures due to the combination of low flows and hot air temperatures. Mostly upwelling-favorable wind 
anomalies occurred along the northern and central portions of California. Strong downwelling-favorable winds 
developed in early summer in the Southern California Bight, resulting in a thin layer of very warm water in 
the immediate vicinity of the coast. The SST at the Scripps Pier in La Jolla, CA observed the warmest SST 
(25.9oC) in its entire historical record extending back to 1916. There were sightings of large assemblages of 
pyrosomes in the coastal waters of the Pacific Northwest for the second year in a row. 

Sea Surface Temperature and Sea Level Pressure Anomalies 

Contributed by Nick Bond (UW/JISAO) 
NOAA/PMEL, Building 3, 7600 Sand Point Way NE, Seattle, WA 98115-6349 
Contact: nicholas.bond@noaa.gov 
Last updated: September 2018 

Description of indices: The state of the North Pacific climate from autumn 2017 through summer 2018 is 
summarized in terms of seasonal mean sea surface temperature (SST) and sea level pressure (SLP) anomaly 
maps. The SST and SLP anomalies are relative to mean conditions over the period of 1981–2010. The SST 
data are from NOAA’s Optimum Interpolation Sea Surface Temperature (OISST) analysis; the SLP data are 
from the NCEP/NCAR Reanalysis project. Both data sets are made available by NOAA’s Earth System Re-
search Laboratory (ESRL) at http://www.esrl.noaa.gov/psd/cgi-bin/data/composites/printpage. 
pl. 

Status and trends: The eastern portion of the North Pacific ocean experienced during 2014–16 one of the 
most extreme marine heat waves in the observational record (Scannell et al., 2016); the interval summarized 
here can be considered a transition period between that event and a more climatologically normal SST 
distribution on the basin-scale. More detail on the evolution of the SST and SLP from a seasonal perspective 
is provided directly below. 

The SST during the autumn (Sep–Nov) of 2017 (Figure 13a) was warmer than normal across almost the 
entire North Pacific Ocean. Greater positive (> 1oC) anomalies occurred in the Chukchi Sea and northwest 
Bering Sea in the northern and eastern Bering Sea, resulting in a delayed onset of sea ice the following winter. 
The SST anomalies were negative in the eastern equatorial Pacific in association with the development of La 
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Niña. The SLP pattern during autumn 2017 featured prominent positive anomalies over the north central 
portion of the North Pacific Ocean, with the greatest departures from normal over the open ocean south 
of the western tip of the Alaska Peninsula (Figure 14a). This SLP distribution implies an enhanced storm 
track along the east coast of Asia, and suppressed storminess from the Aleutians into the Gulf of Alaska 
(GOA). 
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The North Pacific atmosphere-ocean system during winter (Dec–Feb) of 2017-18 reflected to large extent a 
continuation of the previous fall season. The distribution of SST anomalies (Figure 13b) was quite similar, 
with some additional warming in the subtropical northeastern Pacific extending southwestward from southern 
California. The equatorial Pacific was characterized by weak/moderate La Niña conditions with the strongest 
negative SST anomalies well east of the dateline. The SLP during this period (Figure 14b) featured an 
expansion of the pattern of the season before in terms of both magnitude and area, with substantial positive 
anomalies from about 160oE to western North America north of about 30oN. This relatively high SLP in 
combination with negative SLP anomalies over the East Siberian Sea resulted in a pressure pattern that 
supported extremely strong wind anomalies (∼3 to 4 m s-1) from the southwest across the Bering Sea. 

The distribution of anomalous SST in the North Pacific during spring (Mar–May) of 2018 (Figure 13c) was 
similar to that during the previous winter season. Exceptions were warming relative to seasonal normal in 
the eastern Bering Sea and in an east-west band from 25o to 40oN from Japan to the dateline. The SST 
anomalies in the tropical Pacific were of minor amplitude with the ending of La Niña. The SLP anomaly 
pattern (Figure 14c) for spring 2018 featured bands of lower than normal pressure from eastern Siberia 
to northwestern Alaska and higher pressure from south of the Aleutian Islands to the GOA, resulting in 
another season of warm, southwesterly flow anomalies across the Bering Sea. The atmospheric circulation 
in the northeast Pacific promoted relatively upwelling-favorable winds in the coastal GOA. 

The SST anomaly pattern in the North Pacific during summer (Jun–Aug) 2018 is shown in Figure 13d. 
Positive anomalies continued in a broad band extending from Japan to the southeastern GOA and from 
the northern Bering Sea into the Chukchi Sea. In the latter area, particularly strong positive temperature 
anomalies (exceeding 2oC) developed in the vicinity of Bering Strait. Near normal SSTs were present along 
most of the west coast of North America from Vancouver Island to southern California. Warmth continued 
in the subtropical eastern North Pacific from Baja California to the equatorial Pacific east of the dateline, 
where temperatures were roughly 0.5oC above normal. The distribution of anomalous SLP (Figure 14d) 
during summer 2018 included mostly just weak anomalies, which is typical for the season. A band of higher 
than normal pressure extended from the western North Pacific north of about 30oN into the GOA. Lower 
pressure extended from northwestern Canada across interior Alaska into the Bering Sea. 
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(a) Autumn (b) Winter 

(c) Spring (d) Summer 
Figure 13: SST anomalies for autumn (September–November 2017), winter (December 2017–February 2018), spring (March–May 2018), and 
summer (June–August 2018). 
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(a) Autumn (b) Winter 

(c) Spring (d) Summer 
Figure 14: SLP anomalies for autumn (September–November 2017), winter (December 2017–February 2018), spring (March–May 2018), and 
summer (June–August 2018). 
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Climate Indices 

December 2018Aleutian Islands ecosystem status report

NPFMC Bering Sea and Aleutian Islands SAFE

Contributed by Nick Bond (UW/JISAO) 
NOAA/PMEL, Building 3, 7600 Sand Point Way NE, Seattle, WA 98115-6349 
Contact: nicholas.bond@noaa.gov 
Last updated: September 2018 

Description of indices: Climate indices provide an alternative means of characterizing the state of the 
North Pacific atmosphere-ocean system. The focus here is on five commonly used indices: the NINO3.4 
index for the state of the El Niño/Southern Oscillation (ENSO) phenomenon, Pacific Decadal Oscillation 
(PDO) index (the leading mode of North Pacific SST variability), North Pacific Index (NPI), North Pacific 
Gyre Oscillation (NPGO), and Arctic Oscillation (AO). The time series of these indices from 2008 into 
spring/summer 2018 are plotted in Figure 15. 

Status and trends: The North Pacific atmosphere-ocean climate system was mostly on the warm side 
during 2017–18. This was despite the second fall/winter in a row with a negative value for the NINO3.4 
index in association with a weak/moderate La Niña event. The positive state of the PDO (indicating warmer 
than normal SST along the west coast of North America and cooler than normal in the central and western 
North Pacific) that began in early 2014 ended in 2017. This decline is consistent with the typical remote 
effects of ENSO, and in particular the transition from a strong El Niño in 2015–16 to the following two 
episodes of La Niña. The SST anomaly distribution during spring and summer of 2018 has a minimal 
projection on the characteristic pattern of the PDO. The NPI was strongly positive from fall 2017 into 2018 
due to the relatively high SLP in the region of the Aleutian low. A positive sense for the NPI commonly 
accompanies La Niña, its magnitude from late 2017 into 2018 was greater than might be expected. 

The NPGO became strongly negative in 2017, and stayed negative into 2018 (February is the latest month 
for which this index is available). This index has undergone an overall decline from positive values during the 
period of 2008 to 2012. The AO represents a measure of the strength of the polar vortex, with positive values 
signifying anomalously low pressure over the Arctic and high pressure over the Pacific and Atlantic Ocean 
at a latitude of roughly 45oN. It was in a near-neutral state during the last half of 2017 with a transition 
to a positive state in spring 2018 that has continued into summer. A consequence has been relatively low 
pressure in the Arctic during early summer. 

Seasonal Projections from the National Multi-Model Ensemble (NMME) 

Contributed by Nick Bond (UW/JISAO) 
NOAA/PMEL, Building 3, 7600 Sand Point Way NE, Seattle, WA 98115-6349 
Contact: nicholas.bond@noaa.gov 
Last updated: September 2018 

Description of indicator: Seasonal projections of SST from the National Multi-Model Ensemble (NMME) 
are shown in Figures 16. An ensemble approach incorporating different models is particularly appropriate 
for seasonal and longer-term simulations; the NMME represents the average of eight climate models. The 
uncertainties and errors in the predictions from any single climate model can be substantial. More detail 
on the NMME, and projections of other variables, are available at the following website: http://www.cpc. 
ncep.noaa.gov/products/NMME/. 

Status and trends: First, the projections from a year ago are reviewed qualitatively. From an overall 
perspective, the SST forecasts were essentially correct with respect to their basin-scale patterns of negative 
and positive SST anomalies. The NMME forecasts included an under-prediction of the magnitudes of some 
of the more prominent anomalies. In particular, Alaskan waters generally ended up warmer than forecast, 
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Figure 15: Time series of the NINO3.4 (blue), PDO (red), NPI (green), NPGO (purple), and AO 
(turquoise) indices for 2008–2018. Each time series represents monthly values that are normalized using 
a climatology based on the years of 1981–2010, and then smoothed with the application of three-month 
running means. The distance between the horizontal grid lines represents 2 standard deviations. More 
information on these indices is available from NOAA’s Earth Systems Laboratory at http://www.esrl. 
noaa.gov/psd/data/climateindices/. 

especially the Bering Sea shelf during late winter and early spring 2018 where there was much less sea ice 
than suggested by the model forecasts made during September 2017. 

These NMME forecasts of three-month average SST anomalies indicate a continuation of warm conditions 
across virtually all of the North Pacific through the end of the year (Oct–Dec 2018) with a reduction in 
the longitudinal extent of cooler than normal temperatures offshore of the Pacific Northwest (Figure 16a). 
The magnitude of the positive anomalies is projected to be greatest (exceeding 1oC) north of the Kuroshio 
Extension in the western North Pacific and in the northern portion of the Bering Sea. Positive SST anomalies 
are projected in the central and eastern equatorial Pacific. The ensemble model average is strong enough to 
constitute El Niño of weak to moderate magnitude. As of early September 2018, the probabilistic forecast 
provided by NOAA’s Climate Prediction Center (CPC) in collaboration with the International Research 
Institute for Climate and Society (IRI) for the upcoming fall through winter indicates about a 70% chance of 
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El Niño, and otherwise equatorial SSTs in the neutral category. The overall pattern of SST anomalies across 
the North Pacific is maintained through the 3-month periods of December 2018–February 2019 (Figure 16b) 
and February–April 2019 (Figure 16c). There is moderate but by no means a complete consensus among 
the models that the Aleutian low will be deeper than normal (negative SLP anomalies) during the latter 
portion of the winter of 2018–2019. This is a common remote response to El Niño, and tends to result in 
relatively warm late winter and early spring weather for Alaska that is liable to be enhanced by the effects 
of the warmth of the waters surrounding Alaska. For the period of February–April 2019, the models are 
projecting little noticeable decline in the magnitude of the equatorial Pacific temperature anomalies even 
though El Niño often weakens during the boreal spring. The positive SST anomalies along the west coast of 
North America that are indicated in Figure 16c commonly occur after El Niño winters. 
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Implications: The PDO has also generally been positive during these kinds of periods in the past, but 
the predicted warmth in both the western and eastern portions of the mid-latitude North Pacific does not 
resemble the characteristic pattern of the PDO. An important implication is that the PDO is liable to be 
ill-suited for characterizing the state of the North Pacific in early 2019. 
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(a) Months OND 

(b) Months DJF 

(c) Months FMA 

Figure 16: Predicted SST anomalies from the NMME model for OND (1 month lead), DJF (3 month 
lead), and JFM (4 month lead) for the 2017–2018 season. 

48 



Eddies in the Aleutian Islands 

December 2018Aleutian Islands ecosystem status report

NPFMC Bering Sea and Aleutian Islands SAFE

Contributed by Carol Ladd, NOAA/PMEL 
Building 3, 7600 Sand Point Way NE, Seattle, WA 98115-6349 
Contact: carol.ladd@noaa.gov 
Last updated: August 2018 

Description of indicator: Eddies in the Alaskan Stream south of the Aleutian Islands have been shown to 
influence flow into the Bering Sea through the Aleutian Passes (Okkonen, 1996). By influencing flow through 
the passes, eddies could impact flow in the Aleutian North Slope Current and Bering Slope Current as well 
as influencing the transports of heat, salt and nutrients (Mordy et al., 2005; Stabeno et al., 2005) into the 
Bering Sea. 

Since 1992, a suite of satellite altimeters has been monitoring sea surface height. Eddy kinetic energy (EKE) 
can be calculated from gridded altimetry data (Ducet et al., 2000). The Ssalto/Duacs altimeter products 
were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS) 
(http://www.marine.copernicus.eu). 

Figure 17: Eddy Kinetic Energy averaged over January 1993–December 2017 calculated from satellite 
altimetry. Square denotes region over which EKE was averaged for Figure 18. 
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Figure 18: Eddy kinetic energy (cm2 s-2) averaged over region shown in Figure 17. Black (line with 
highest variability): monthly EKE (dashed part of line is from near-real-time altimetry product which 
is less accurate than the delayed altimetry product). Red: seasonal cycle. Green (straight line): mean 
over entire time series. 

Status and trends: Eddy kinetic energy (EKE) calculated from gridded altimetry data is particularly 
high in the Alaskan Stream from Unimak Pass to Amukta Pass (Figure 17) indicating the occurrence of 
frequent, strong eddies in the region. The average EKE in the region 171oW-169oW, 51.5o-52.5oN (Figure 
18) provides an index of eddy energy likely to influence the flow through Amukta Pass. Particularly strong 
eddies were observed south of Amukta Pass in 1997, 1999, 2004, 2006/2007, 2009/2010, and summer 2012. 
Eddy energy in the region has been low from the fall 2012 through 2018. 

Factors causing trends: The causes of variability in EKE are currently unclear and a subject of ongoing 
research. 

Implications: Numerical models have suggested that eddies passing near Amukta Pass may result in 
increased flow from the Pacific to the Bering Sea (Maslowski et al., 2008). These trends indicate that higher 
than average volume, heat, salt, and nutrient fluxes to the Bering Sea through Amukta Pass may have 
occurred in 1997/1998, 1999, 2004, 2006/2007, 2009/2010, and summer 2012. These fluxes likely have been 
smaller since fall 2012. 

Satellite-derived Sea Surface Temperature Anomalies in the Aleutian Islands 

Contributed by Jordan Watson, Auke Bay Laboratories, Alaska Fisheries Science Center, National Marine 
Fisheries Service, NOAA 
Contact: jordan.watson@noaa.gov 
Last updated: August 2018 

Description of indicator: Sea surface temperature (SST) is often used to explore relationships between 
commercial fisheries and environmental dynamics. During interpretation of fishery and ecological data, the 
question often arises, “Was it a cold year or a warm year?” Using satellite data, this ecosystem indicator 
provides a transparent and simple method by which to evaluate sea surface temperature anomalies across 
spatial scales that are not limited to the location of a single buoy or data collected during seasonal surveys. 

A common limitation of SST records derived from satellites has been missing data as a result of cloud cover. 
Using the NASA multi-scale ultra-high resolution (MUR) SST dataset however, a combination of collection 
modalities creates a gap-free blend of data (https://mur.jpl.nasa.gov/InformationText.php). Data are 
available at the daily level for the North Pacific from mid-2002 to present and can be downloaded from the 
NOAA Coast Watch West Coast Node ERDDAP server (https://coastwatch.pfeg.noaa.gov/erddap/) 
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where they are searchable as “Multi-scale ultra-high resolution (MUR) SST Analysis fv04.1, Global, 0.01o , 
2002–present, daily”. More than 24 billion individual daily temperature records were downloaded (October 
1, 2002–September 30, 2018) and the data were averaged daily by Alaska Department of Fish and Game 
(ADF&G) groundfish statistical areas (also called stat6 areas; www.adfg.alaska.gov/index.cfm?adfg= 
fishingCommercialByFishery.statmaps), yielding about 10 million temperature records (a daily record for 
each of the 1,736 statistical areas). More detailed methods are available online (github.com/jordanwatson/ 
ERDDAP). 
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As an ecosystem indicator for the Aleutian Islands, daily temperatures were averaged by month for the 
Aleutian Islands (AI) ecosystem regions (from ADF&G statistical areas in the western AI [WAI], west of 
177oW, central AI [CAI], 170 o–177oW, and east AI (EAI), 163oW–170oW [https://alaskafisheries. 
noaa.gov/maps]) and anomalies were calculated (Figure 19). Monthly anomalies were aggregated by winter 
(October–March) and summer (April–September). In Figure 19, winter 2002 refers to October–December 
2002 and January–March 2003. Horizontal dashed lines in Figure 19 are provided as a reference at an 
anomaly of ±0.5. The full dataset (or aggregated versions) can be obtained by contacting the author of this 
contribution. 

Figure 19: Seasonal sea surface temperature anomalies for the Aleutian Islands where WAI, CAI, and 
EAI are the western, central, and eastern Aleutian Islands, respectively. Data were unavailable for 
summer 2002 and winter 2018, so these portions of their respective figures are omitted. 
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Status and trends: There was a general consistency in temperature anomalies within each year for the 
central and eastern Aleutian Island areas, whereas the western Aleutian Island region was more likely to 
diverge from the other areas in the direction of temperature anomaly within a season (Figure 19). The first 
few years of the time series were mixed in terms of warm versus cold, before turning consistently cold during 
the winter of 2006. Summer and winter temperatures were anomalously warm starting in the summer and 
winter of 2014, and cooling down again during summer 2018. 
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Factors influencing observed trends: It may be important to note that the Aleutian Island ecosystem 
regions include waters both north and south of the Aleutian chain. Thus, temperature anomalies will be 
driven by the combined dynamics of both Bering Sea and Gulf of Alaska waters. The trends in warming 
during recent years are consistent with the remarkably warm periods throughout both the Bering Sea and 
Gulf of Alaska (Bond et al., 2015; Hu et al., 2017). 

Implications: A large body of research has explored the effects of stanzas of warm water observed in the 
Bering Sea over the last two decades, and recent work in particular has attempted to understand what 
impacts the most recent warming may have on fishery ecosystems (e.g., Stabeno et al., 2017). While most 
of this work has focused on the eastern Bering Sea in particular, similar patterns of impacts on prey quality 
and recruitment of juvenile fish may occur in the Aleutian Islands. 

The ecosystem indicator presented here provides an example of ways that satellite data can be explored at 
aggregated spatial and temporal scales. The temperature data set can be utilized across a range of fine (daily 
temperatures by state statistical area) to coarse (e.g., monthly temperatures by Aleutian Island ecosystem 
region) scales depending on the questions being asked by researchers or policy makers. For researchers that 
study fishery effects directly, the daily SST data described here are being linked to fish ticket data in AKFIN 
so that landings information will be explicitly associated with the temperature of the ADF&G statistical 
areas in which the fish were reported to have been caught. 

Aleutian Islands Trawl Survey Water Temperature Analysis 

Contributed by Ned Laman, Groundfish Assessment Program, Resource Assessment and Conservation En-
gineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
Contact: ned.laman@noaa.gov 
Last updated: October 2018 

Description of indicator: Since 1994, water temperature data have routinely been collected during the 
Aleutian Islands Bottom Trawl Survey conducted by the Alaska Fisheries Science Center Resource Assess-
ment and Conservation Engineering Division Groundfish Assessment Program (Von Szalay et al., 2017). 
There were three triennial AI bottom trawl surveys between 1994 and 2000; since 2000 the surveys have 
been conducted biennially (except in 2008 when there was no AI bottom trawl survey). 

Microbathythermographs (MBTs) attached to the headrope of the net measure and record water temperature 
and depth during each trawl haul. In 2004, the SeaBird (SBE-39) MBT (Sea-Bird Electronics, Inc., Bellevue, 
WA) that is in use today replaced the Brancker XL200 data logger (Richard Brancker Research, Ltd., Kanata, 
Ontario, Canada) which had been in use since 1993. The analyses presented here utilize bathythermic data 
collected on AI bottom trawl surveys since 1994. 

The bottom trawl survey has historically begun in late spring (late May to early June) and proceeds west 
from around Unimak Pass to Stalemate Bank over the course of the summer sampling in the Bering Sea and 
Pacific Ocean north and south of the archipelago (Von Szalay et al., 2017). In 2002 and 2006, our typical 
sampling progression was partially reversed with the later season survey sweeping from west to east. We 
anticipate that water temperatures will increase with advancing collection date and increasing day length as 
the survey progresses westward over the summer which could lead to spatially and temporally confounded 
data complicating inter-annual comparisons. 
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To account for the influence of changing day length on water temperatures over the course of the summer and 
to make inter-annual comparisons more meaningful, an attempt was made to remove the effect of collection 
date on water temperature by standardizing all bottom trawl collection dates to a median survey date. 
This was achieved using generalized additive modeling (GAM) to estimate the effects of collection date on 
temperature at depth across survey areas and years. The resulting model was used to predict temperature at 
depth at the historic median survey day for all survey trawl hauls of July 10. Residuals from this GAM were 
added to the predicted median day temperature-at-depth to produce estimates of thermal anomaly from the 
model prediction at each station in all survey years. To facilitate visualization, these temperature estimates 
were averaged over systematic depth bins in 1⁄2 degree longitude increments. Depth gradations were set finer 
in shallower depths and broader in deeper depths (e.g., 5 m bins between 0 and 100 m, 10 m bins between 
100 and 200 m, and 100 m bins between 200 and 500 m) to capture the rapid changes anticipated in surface 
waters of temperature with depth. To further stretch the color ramp and enhance the visual separation of 
the near-surface temperature anomalies (between about 4 and 10oC and < 100 m), predicted temperature 
anomalies ≥7.5oC and ≤3.5oC were fixed at 7.5 and 3.5oC (e.g., a 12.5oC temperature anomaly was recoded 
as 9.5oC for the graphic representation). 
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Status and trends: The warmest anomalies across the AI typically occurred near the surface (< 50 m) 
and their depth of penetration beyond the surface varied between years (Figure 20). During the warmest 
years in the record (2014 and 2016), the warmer anomalies penetrated to 100 m or deeper. There were 
also some temporally persistent and spatially consistent features in these anomaly plots. Warm, near-
surface temperature anomalies were commonly found around the Island of Four Mountains, between Seguam 
Pass (1730W) and Amchitka Pass (1790W), and west of Buldir Pass (1750E) and cooler temperatures were 
consistently observed at depths ≥100 m near Seguam Island (1720 30’W) which is a particularly striking 
feature during colder years (e.g., 2000, 2012). Warmer years were dominated not only by warmer surface 
anomalies, but by deeper penetration of warmer waters across the breadth of the archipelago. The last three 
survey years in the AI have generally been warmer than previous years with the exception of 1997 which was 
comparable with the thermal anomalies observed in 2014 and 2016. The 2018 AI profile suggests a return to 
slightly cooler conditions relative to 2016, but is still amongst the warmer years from our record with warm 
anomalies penetrating deeper and distributed more extensively across the Aleutian archipelago than in 2014. 
The marked differences amongst survey years and the warm and cold year patterns help to illustrate the 
highly variable and dynamic oceanographic environment found in the Aleutian archipelago. 

Factors influencing observed trends: These observations, and the thermal anomalies modeled from 
them, represent a brief spatial and temporal snapshot of water temperatures collected during bottom trawl 
surveys in the AI. Each temperature bin represents data collected over a relatively short time as the vessels 
moved through an area. Thus, it is difficult to draw general conclusions since short term events such as 
storms, tidal exchange, or freshwater runoff greatly affect local water temperatures. 

More recent and larger scale phenomena may have longer-lasting implications on water temperatures in the 
region. The thermal signal caused by the “Ridiculously Resilient Ridge” of atmospheric high pressure that 
helped to establish the persistent warm water “Blob” in the Northeast Pacific during 2014 and 2015 (Bond 
et al., 2015; Di Lorenzo and Mantua, 2016), and which likely intensified the El Niño Southern Oscillation 
(ENSO) event of 2015–2016 (Levine and McPhaden, 2016), probably influenced the temperatures observed 
on our 2016 survey. Daily plots of sea surface temperature anomalies (SST) show warmer surface waters 
extending from east to west during the summer of 2016 (http://www.ospo.noaa.gov/Products/ocean/ 
sst/anomaly/index.html). Due to these and other sources of variation not accounted for in the temperature 
model presented here, caution should be exercised when interpreting these results. 

Implications: The strength and persistence of various oceanographic features in the AI are anticipated to 
influence ecological processes there. The depth and horizontal dispersion of the mixed layer affect primary 
production in this region (Mordy et al., 2005). Water temperatures influence ontogenesis of Atka mackerel 
eggs and larvae (Lauth et al., 2007) and have been shown to impact pollock abundance in the eastern Bering 
Sea (Stevenson and Lauth, 2012). Work on habitat-based delineation of essential fish habitat (EFH) in the 
AI and eastern Bering Sea have demonstrated that water temperature can be an important determinant of 
EFH for many groundfish species (Laman et al., 2017a,b; Turner et al., 2017). Eddies are also believed to 
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play a major role in the transport of both heat and nutrients into the Bering Sea through the Aleutian passes 
(Maslowski et al., 2008). Phenomena such as these must influence both AI and Bering Sea ecosystems and 
fish populations. By considering inter-annual differences in water temperatures and their implications, we 
can better utilize our survey data to understand the state of fish populations in the AI. 
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Figure 20: Median-survey-date-standardized, generalized additive model (GAM) predicted thermal (oC) 
anomaly profiles from water temperature measurements collected on Aleutian Islands bottom trawl 
surveys (1994–2018); to visually enhance near-surface temperature changes, values ≤3.5oC or ≥7.5oC 
were fixed at 3.5 or 7.5oC and the y-axis (depth) was truncated at 400 m though maximum collection 
depth was ca. 500 m. 
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Structural Epifauna in the Aleutian Islands 

Contributed by Wayne Palsson and Chris Rooper, Resource Assessment and Conservation Engineering Di-
vision, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
Contact: wayne.palsson@noaa.gov 
Last updated: October 2018 

Description of indicator: Groups considered to be structural epifauna, formerly known as Habitat Areas 
of Particular Concern (HAPC) biota, include seapens/seawhips, corals, anemones, and sponges. The biennial 
survey in the Aleutian Islands (AI) does not sample the density of HAPC fauna well, but does seem to capture 
spatial trends in presence or absence (Rooper et al., 2016, 2018). However, survey effort in rough or rocky 
areas where these groups are likely to be more abundant and survey effort is quite limited. The gears used 
by the Japanese vessels in the surveys prior to 1991 were quite different from the survey gear used aboard 
U.S. vessels in subsequent surveys and likely resulted in different catch rates for many of these groups. For 
each species group, the largest catch over the time series was arbitrarily scaled to a value of 100 and all other 
values were similarly scaled. The standard error (±1) was weighted proportionally to the CPUE to get a 
relative standard error. Note that CPUE is presented in four areas that differ from the ecoregions that are 
used elsewhere in this report (Figure 26). 

Figure 21: NMFS summer bottom trawl survey strata in the Aleutian Islands. Red lines demarcate 
Aleutian Islands INPFC Areas. The Central and Eastern Aleutians INPFC areas together correspond 
to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area 
corresponds to the Eastern Aleutian ecoregion in this report. 

Sponges include unidentified Porifera, calcareous sponges, hexactinellid sponges and demosponges, which 
are the dominant group. Gorgonians include families of upright branching coral (Primnoidae, Plexauridae, 
Isididae, etc.). Hydrocorals include stylasterid corals and stony corals. Soft corals are uncommon in the 
Aleutian Islands bottom trawl survey, but are represented by species such as Gersemia. Sea anemones 
include all sea anemones captured in the bottom trawl surveys and pennatulaceans include sea pens and sea 
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whips. 
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Status and trends: A few general patterns are clearly discernible (Figure 22). Sponges are caught in 
most tows (>80%) in the AI west of the southern Bering Sea. Interestingly, the frequency of occurrence of 
sponges in the southern Bering Sea is relatively high, but sponge abundance is much lower than other areas. 
The sponge estimates for the 1983 and 1986 surveys are much lower than other years, probably due to the 
use of different gear, including large tire gear that limited the catch of most sponges and possibly recording 
inconsistencies. In recent years, the abundance of sponges in the western and central AI and the frequency 
of occurrence have been declining but with the 2018 results may be stabilizing. 

Gorgonian corals occur in about 20-40% of bottom trawl survey tows. Abundance of coral in all areas 
has declined since about 1991-1993 surveys and is at generally low levels in all areas, but the frequency of 
occurrence has remained steady. Hydrocorals are commonly captured, except in the southern Bering Sea. 
They typically occur in about 20-40% of tows in other areas. Similar to sponges, hydrocoral frequency of 
occurrence and abundance has decreased in the western and central Aleutian Islands over recent surveys 
(from a peak in the 2000 survey). The 2018 results indicate recent stability at low levels. 

Soft corals occur in relatively few tows, except in the eastern Aleutian Islands where they occur in about 
20% of tows. Their abundance time series is dominated by a couple of years (1986 in the western Aleutians 
and 1991 in the central Aleutians). 

Sea anemones are also common in survey catches (∼20-40% of tows) but abundance trends are not clear for 
most areas. In the Southern Bering Sea abundance and frequency of occurrence have been increasing during 
recent surveys until 2018 when relative abundance declined. 

Sea pens are much more likely to be encountered in the southern Bering Sea and eastern AI than in areas 
further west. Abundance estimates are low across the survey area and large apparent increases in abundance, 
such as that seen in the eastern AI in 1997, are typically based on a single large catch. 
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Figure 22: Mean CPUE of structural epifauna groups by area from RACE bottom trawl surveys in the Aleutian Islands from 1980 through 2018. 
Error bars represent standard errors. The gray lines represent the percentage of non-zero catches. 



Factors influencing observed trends: The two major threats to populations of benthic invertebrates in 
the Aleutian Islands have been identified as fishing impacts and impacts of climate change. Both of these 
processes are occurring in the Aleutian Islands. Much of the benthic habitat in the Aleutians (∼50% of the 
shelf and slope to depths of 500 m) has been protected from mobile fishing gear since 2006, however, no 
studies have been conducted to determine potential recovery or expansion of populations due to the closures. 
As indicated by the 2018 bottom trawl survey temperature time series (p. 52), temperatures for the last 
three biennial surveys have been warmer than historical records. Non-motile organisms are sensitive to these 
changes in the benthic environment as well. 
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Implications: The Aleutian Islands bottom trawl survey is not particularly good at measuring the abun-
dance trends fore these groups of HAPC species. However, the bottom trawl surveys are reasonably adept 
at capturing presence or absence trends as indicated by recent distribution model validation studies for 
the species groups. The recent declines in sponge, gorgonians and hydrocorals in the western and central 
Aleutian Islands should continue to be monitored. 
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There are no updates to primary production indicators in this year’s report. See the contribution archive 
for previous indicator submissions at: http://access.afsc.noaa.gov/reem/ecoweb/index.php 

Zooplankton 

Continuous Plankton Recorder Data from the Aleutian Islands and southern Bering 
Sea through 2017 

Contributed by Sonia Batten, Marine Biological Association (CPR Survey), c/o 4737 Vista View Cr, 
Nanaimo, BC, V9V 1N8, Canada 
Contact: soba@mba.ac.uk 
Last updated: August 2018 

Description of indicator: Continuous Plankton Recorders (CPRs) have been deployed in the North Pacific 
routinely since 2000. Two transects are sampled seasonally, both originating in the Strait of Juan de Fuca. 
One is sampled monthly (∼Apr-Sept) and terminates in Cook Inlet; the second is sampled 3 times per 
year and follows a great circle route across the Pacific, terminating in Japan. Several indicators are now 
routinely derived from the CPR data and updated annually. In this report we update three indices for three 
regions (Figure 23): large diatoms (the CPR only retains large, hard-shelled phytoplankton so while a large 
proportion of the community is not sampled, the data are internally consistent and may reveal trends), 
mesozooplankton biomass (estimated from taxon-specific weights and abundance data) and mean Copepod 
Community Size (Richardson et al., 2006) as an indicator of community composition. Anomaly time series 
of each index have been calculated as follows: a monthly mean value (geometric mean) is first calculated. 
Each sampled month is then compared to the mean of that month and an anomaly calculated (Log10). The 
mean anomaly of all sampled months in each year is calculated to give an annual anomaly. 

The Aleutian Island region, including the southern Bering Sea is sampled at most 3 times per year by the 
east-west transect. Note that in 2017 the region was only sampled in May owing to variability in the ship’s 
transect which went south of the Bering Sea in the summer. New this year, the top three taxa by abundance 
and biomass in 2017 are presented to allow comparison across Alaskan CPR sampling regions 2. Biomass is 
a taxon specific value from literature, not actually measured. Some taxa are a group of many species, some 
are individual life history stages of a single species. Aggregating by season can mask phenological differences. 
For example, the copepod Neocalanus plumchrus is common in spring but nearly absent in late summer/fall. 
This project is funded in part by the Gulf Watch Alaska long-term monitoring program funded by the Exxon 
Valdez Oil Spill Trustee Council. 

Status and trends: Figure 24 shows that the diatom abundance and mesozooplankton biomass anomalies 
for May 2017 continued to be slightly positive, as they have been in more recent years, while the mean 
copepod community size anomaly was strongly negative still (it has been negative in each season sampled 
since summer 2014), indicating a community biased towards smaller species than typical for May. 

Factors influencing observed trends: Recent analysis of summer CPR data in this region has revealed 
alternating (and opposing) patterns of high and low abundance of diatoms and large copepods between 2000 
and 2012, believed to be the result of a trophic cascade caused by maturing pink salmon present in the 
region (Batten et al., 2018). Although the upper panel (diatoms) in Figure 24 contains data from spring 
and autumn as well as summer the alternating pattern is clear until 2012. The zooplankton data in Figure 
2 consist of more taxa than just large copepods but it is likely that there is some top-down influence of 
the Pink Salmon also present in these data. In 2013 the east Kamchatka Pink Salmon run was much lower 
than expected, and in 2014 it was much higher. CPR data were not collected in this region in the summers 
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Figure 23: Location of the data in this report. Dots indicate actual sample positions and may overlay 
each other. 

of 2015–2017 so we are not certain if their influence on the plankton continues, nor how to tease out the 
simultaneous influence of ocean climate. However, the copepod community size anomaly has been negative 
in each season sampled since summer 2014, which suggests a real increase in the relative abundance of smaller 
species, likely because of warmer than normal conditions. 

Implications: This region appears to be subjected to top down influence by pink salmon as well as bottom 
up forcing by ocean climate, which is particularly challenging to interpret. Changes in community composi-
tion (e.g. abundance and composition of large diatoms, prey size as indexed by mean copepod community 
size) may reflect changes in the nutritional quality of the organism to their predators. Changes in abundance 
or biomass, together with size, influences availability of prey to predators. For example, while mesozoo-
plankton biomass anomalies were positive during the last 3 years, the reduced average size of the copepod 
community suggests that the biomass was packaged into numerous, but small, prey items. This may require 
more work by predators to obtain their nutritional needs. 
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Table 2: The top three taxa by abundance and biomass across Alaska CPR regions in 2017: 

Taxa by abundance Mean # sample Taxa by Biomass mg per sample 

Southern Bering 
Sea/Aleutians 

Foraminifera 

Neocalanus plum-
chrus I IV 
Oithona spp. 

214.7 

102.7 

91.0 

Neocalanus plum-
chrus V 
Neocalanus flemin-
geri V 
Eucalanus bungii 

44.2 

8.7 

7.4 

Alaskan Shelf Pseudocalanus spp. 687.4 Neocalanus plum-
chrus V 

23.1 

Limacina helicina 
Neocalanus plum-
chrus V 

153.7 
47.4 

Pseudocalanus spp. 
Neocalanus cristatus 
V VI 

13.4 
13.0 

Oceanic NE Pacific Pseudocalanus spp. 84.9 Neocalanus cristatus 
V VI 

18.3 

Tintinnida Total 83.8 Neocalanus plum-
chrus V 

5.0 

Foraminifera 83.3 Limacina helicina 2.9 

Figure 24: Annual anomalies of three indices of lower trophic levels (see text for description and deriva-
tion) for each region shown in Figure 23. 
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Jellyfish in the Bottom Trawl Survey 

Contributed by Wayne Palsson and Chris Rooper, Resource Assessment and Conservation Engineering Di-
vision, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
Contact: wayne.palsson@noaa.gov 
Last updated: October 2018 

Description of indicator: RACE bottom trawl surveys in the Aleutian Islands (AI) are designed primarily 
to assess populations of commercially important fish and invertebrates. However many other species are 
identified, weighed and counted during the course of these surveys and these data may provide a measure 
of relative abundance for some of these species. Jellyfish are probably not sampled well by the gear due to 
their fragility and potential for catch in the mid-water during net deployment or retrieval. Therefore jellyfish 
encountered in small numbers which may or may not reflect their true abundance in the AI. The fishing 
gear used aboard the Japanese vessels that participated in all AI surveys prior to 1990 was very different 
from the gear used by all vessels since. This gear difference almost certainly affected the catch rates for 
jellyfish. For jellyfish, the catches for each year were scaled to the largest catch over the time series (which 
was arbitrarily scaled to a value of 100). The standard error (± 1) was weighted proportionally to the CPUE 
to get a relative standard error. The percentage of positive catches in the survey bottom trawl hauls was 
also calculated. Note that CPUE is presented in four areas that differ from the ecoregions that are used 
elsewhere in this report (see Figure 26). 

Status and trends: Jellyfish mean catch per unit effort (CPUE) is typically higher in the western and 
eastern AI than in other areas (Figure 25). The frequency of occurrence in trawl catches is generally from 
20-60% across all areas, but has been variable. The 2006 AI survey experienced peak biomasses in all areas, 
whereas the 1992 survey had high abundance in the western AI only. Jellyfish catches and frequency of 
occurrence in the AI bottom trawl survey has been steadily increasing from 2012 to 2016 surveys in all areas, 
but decreased in 2018 in all areas. 

Factors influencing observed trends: Unknown 

Implications: The 2018 decline in CPUE and frequency of occurrence of jellyfish is in contrast to the 
steady increase in occurrence and abundance between 2012 and 2016. The increase during these three 
surveys coincided with warming temperatures found during the AI survey, but despite continuing warm 
temperatures in 2018, the relative abundance of jellyfish declined. 
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Figure 25: Relative mean CPUE of jellyfish species by INPFC area from RACE bottom trawl surveys 
in the Aleutian Islands from 1980 through 2018. Error bars represent standard errors. The gray lines 
represent the percentage of non-zero catches. The Central and Eastern Aleutians INPFC areas together 
correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC 
area corresponds to the Eastern Aleutian ecoregion in this report. 
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There are no ichthyoplankton indicators in this year’s report. See the contribution archive for previous 
indicator submissions at: http://access.afsc.noaa.gov/reem/ecoweb/index.php 

Forage Fish 

There are no individual contributions with forage fish indicators in this year’s report, other than the pelagic 
foragers guild and the puffin indicators in the Report Card. See the contribution archive for previous indicator 
submissions at: http://access.afsc.noaa.gov/reem/ecoweb/index.php 

Groundfish 

Aleutian Islands Groundfish Condition 

Contributed by Jennifer Boldt1, Chris Rooper1, and Jerry Hoff2 

1Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, Canada 
V9T 6N7 
2Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National 
Marine Fisheries Service, NOAA 
Contact: chris.rooper@dfo-mpo.gc.ca 
Last updated: October 2018 

Description of indicator: Length-weight residuals are an indicator of somatic growth (Brodeur et al., 
2004) and, therefore, a measure of fish condition. Fish condition is an indicator of how heavy a fish is 
per unit body length, and may be an indicator of ecosystem productivity. Positive length-weight residuals 
indicate fish are in better condition (i.e., heavier per unit length); whereas, negative residuals indicate fish 
are in poorer condition (i.e., lighter per unit length). Fish condition may affect fish growth and subsequent 
survival (Paul et al., 1997; Boldt and Haldorson, 2004). 

The AFSC Aleutian Islands bottom trawl survey data was utilized to acquire lengths and weights of individual 
fish for walleye pollock, Pacific cod, arrowtooth flounder, southern rock sole, Atka mackerel, northern rockfish, 
and Pacific ocean perch. Only standard survey stations were included in analyses. Data were combined 
by INPFC area; Southern Bering sea, Eastern Aleutian Islands, Central Aleutian Islands, and Western 
Aleutian Islands (Figure 26). Length-weight relationships for each of the seven species were estimated with 
a linear regression of log-transformed values over all years where data was available (during 1984–2018). 
Additionally, length-weight relationships for age 1+ walleye pollock (length from 100–250 mm) were also 
calculated independent from the adult life history stage. Predicted log-transformed weights were calculated 
and subtracted from measured log-transformed weights to calculate residuals for each fish. Outliers were 
removed using a Bonferroni outlier test (with a cutoff test statistic of 0.7 for removal). Length-weight 
residuals were averaged for the entire AI and for the 3 INPFC areas sampled in the standard summer survey. 
Temporal and spatial patterns in residuals were examined. 

Status and trends:: Length-weight residuals varied over time for all species with a few notable patterns 
(Figure 27). Residuals for most species where there was data were negative from 2000 to 2006. Residuals were 
positive for all species but southern rock sole in 2010. In 2012–2016 length-weight residuals were negative 
across most species, and the trendline has been negative since 2010. For northern rockfish, Pacific cod and 
Pacific ocean perch there has been a declining trend in residuals over the years covered by the survey and 
condition in the last four surveys has been particularly negative. 
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Figure 26: NMFS summer bottom trawl survey strata in the Aleutian Islands. Red lines demarcate 
Aleutian Islands INPFC Areas. The Central and Eastern Aleutians INPFC areas together correspond 
to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area 
corresponds to the Eastern Aleutian ecoregion in this report. 

Spatial trends in residuals were also apparent for some species (Figure 28). Most species were generally in 
better condition in the southern Bering Sea (with the exception of Pacific cod). Species generally exhibited 
the worst condition in the Western Aleutians (with the exception of Pacific cod) Even in years where length 
weight residuals were positive overall (such as the early years in the northern rockfish time series), length 
weight residuals were lower (although still positive) in the western Aleutian Islands relative to other areas. 

Factors influencing observed trends: One potential factor causing the observed temporal variability in 
length-weight residuals may be population size. The species that appear to exhibit declining trends over 
the time series, have generally been increasing in abundance throughout the Aleutians (northern rockfish, 
Pacific Ocean perch and Pacific cod). In the western Aleutians, this may be especially magnified, due to the 
overall high level of population abundance in the area. 

Other factors that could affect length-weight residuals include temperature, survey sampling timing and fish 
migration. The date of the first length-weight data collected is generally in the beginning of June and the 
bottom trawl survey is conducted sequentially throughout the summer months from east to west. Therefore, 
it is impossible to separate the in-season time trend from the spatial trend in this data. 

Implications: A fish’s condition may have implications for its survival. For example, in Prince William 
Sound, the condition of herring prior to the winter may in part determine their survival (Paul and Paul 
1999). The condition of Aleutian Island groundfish, may therefore partially contribute to their survival and 
recruitment. In the future, as years are added to the time series, the relationship between length-weight 
residuals and subsequent survival can be examined further. It is likely, however, that the relationship is 
more complex than a simple correlation. Also important to consider is the fact that condition of all sizes 
of fish were examined and used to predict survival. Perhaps it would be better to examine the condition of 
juvenile fish, not yet recruited to the fishery, or the condition of adult fish and correlations with survival. 
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Figure 27: Length-weight residuals for seven Aleutian Islands groundfish sampled in the NMFS standard 
summer bottom trawl survey, 1984-2018. The Central and Eastern Aleutians INPFC areas together 
correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC 
area corresponds to the Eastern Aleutian ecoregion in this report. 

Distribution of Rockfish Species in the Aleutian Islands 

Contributed by Wayne Palsson and Chris Rooper, Resource Assessment and Conservation Engineering Di-
vision, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
Contact: wayne.palsson@noaa.gov 
Last updated: October 2018 
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Figure 28: Length-weight residuals for seven Aleutian Islands groundfish sampled in the NMFS standard 
summer bottom trawl survey, 1984-20186, by INPFC area. The Central and Eastern Aleutians INPFC 
areas together correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern 
Bering Sea INPFC area corresponds to the Eastern Aleutian ecoregion in this report. 

Description of indicator: In a previous analysis of rockfish from 14 bottom trawl surveys in the Gulf 
of Alaska and Aleutian Islands (Rooper, 2008), five species assemblages were defined based on similarities 
in their distributions along geographical position, depth, and temperature gradients. The 180 m and 275 
m depth contours were major divisions between assemblages inhabiting the shelf, shelf break, and lower 
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continental slope. Another noticeable division was between species centered in southeastern Alaska and 
those found in the Aleutian Islands. 

In this time-series, the mean-weighted distributions of six rockfish (Sebastes spp.) species along the three 
environmental gradients (depth, temperature, and position) were calculated for the Gulf of Alaska and 
Aleutian Islands. A weighted mean value for each environmental variable was computed for each survey as: P 

(fixi)
Mean = P ,

fi 

where fi is the CPUE of each rockfish species group in tow i and xi is the value of the environmental variable 
at tow i. The weighted standard error (SE) was then computed as: r P P 

2( (fix ))−(( fi)∗mean2 )
i P 
( fi )−1 

SE = √ , 
n 

where n is the number of tows with positive catches. Details of the calculations and analyses can be found in 
Rooper (2008). These indices monitor the distributions of major components of the rockfish fisheries along 
these environmental gradients to detect changes or trends in rockfish distribution. 

Status and trends: There are four statistically significant depth-related trends over the time series that 
have continued over the last several surveys, as the distribution of adult rougheye rockfish, adult Pacific 
Ocean perch, shortraker rockfish, and northern rockfish have been shallower in the most recent surveys of 
the AI (Figure 29). It appears that shallow-distributed dusky rockfish and deepwater shortspine thornyhead 
are maintaining their same depth interval over time. Northern rockfish show a significant increasing trend 
in distance over the time series, indicating that their mean distribution is trending westward. There were 
no significant trends in mean-weighted temperature distributions for any species and all species were found 
within about 1oC. 
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Figure 29: Plots of mean weighted (by catch per unit effort) distributions of six rockfish species-groups 
along three environmental variables in the Aleutian Islands. Mean weighted distributions of rockfish 
species-groups are shown for A) position, B) depth, and C) temperature. Position is the distance from 
Hinchinbrook Island, Alaska, with positive values west of this point. 

Factors causing observed trends: The observed changes in depth and spatial distributions for adult 
rougheye rockfish, shortraker rockfish, northern rockfish and adult Pacific Ocean perch in the AI are probably 
related to changes (increases) in overall abundance. Although it is interesting to note that in the cases of 
adult rougheye rockfish, adult Pacific Ocean perch, northern rockfish, and shortraker rockfish their depth 
range has become shallower while the temperatures occupied by the species have not changed significantly 
in recent surveys (with the exception of possibly the 2016 survey). 

Implications: The trends in the mean-weighted distributions of rockfish should continue to be monitored, 
with special attention to potential causes of the shift in depth and position distributions of rockfish, especially 
as they relate to changing temperatures. During the last two surveys in 2016 and 2018, all five rockfish groups 
were found at the highest mean-weighted temperature in the time series, and the trend for all species has 
been upward since the 2012 survey. 
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Miscellaneous Species in the Aleutian Islands 

Contributed by Wayne Palsson and Chris Rooper, Resource Assessment and Conservation Engineering Di-
vision, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
Contact: wayne.palsson@noaa.gov 
Last updated: October 2018 

Description of indicator: RACE bottom trawl surveys in the Aleutian Islands (AI) are designed primarily 
to assess populations of commercially important fish and invertebrates. However many other species are 
identified, weighed and counted during the course of these surveys and these data may provide a measure 
of relative abundance for some of these species. Many of these species are not sampled well by the gear or 
occur in areas that are not well sampled by the survey (hard, rough areas, mid-water etc.) and are therefore 
encountered in small numbers which may or may not reflect their true abundance in the AI. The fishing gear 
used aboard the Japanese vessels that participated in all AI surveys prior to 1991 was very different from 
the gear used by all vessels since. This gear difference almost certainly affected the catch rates for some of 
these species groups. Apparent abundance trends for a few of these groups are shown in Figure 30. For each 
species group, the largest catch over the time series was arbitrarily scaled to a value of 100 and all other 
values were similarly scaled. The standard error (± 1) was weighted proportionally to the CPUE to get a 
relative standard error. Note that CPUE is presented in four areas that differ from the ecoregions that are 
used elsewhere in this report (see Figure 26). 

Status and trends: Echinoderms are frequently captured in all areas of the AI surveys occurring in 80-90% 
of all bottom trawl hauls. Echinoderm mean catch per unit effort (CPUE) is typically higher in the central 
and eastern AI than in other areas, although frequency of occurrence in trawl catches is consistently high 
across all areas. The lowest echinoderm CPUE has usually been in the southern Bering Sea, but has been 
increasing for the last three surveys. Eelpout CPUEs have generally been highest in the central and eastern 
AI. There has been a decline in eelpout biomass in the western AI over the last four surveys and in the 
central AI in 2018. Eelpouts generally occur in <10% of survey hauls across all areas. Poachers occur in 
a relatively large number of tows across the AI survey area (about 30-40% consistently), but mean CPUE 
trends are unclear and abundance appears low. A new shrimp time series has been calculated since 2016. 
The shrimp time series shows generally increasing trends in frequency of occurrence across all areas except 
the western AI since ∼1990. However, the CPUE is dominated by a single peak in 2006 in the western AI. 
Shrimp CPUE in 2018 was slightly lower in all regions except the western AI. 

Factors influencing observed trends: Unknown 

Implications: AI survey results provide limited information about abundance or abundance trends for 
these species due to problems in catchability. Therefore, the indices presented are likely of limited value 
to fisheries management. These species are not typically commercially important, but the trends in shrimp 
especially should be monitored as these are an important prey base for benthic commercial species. 
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Figure 30: Relative mean CPUE of miscellaneous species by area from RACE bottom trawl surveys in the Aleutian Islands from 1980 through 
2018. Error bars represent standard errors. The gray lines represent the percentage of non-zero catches. The Central and Eastern Aleutians 
correspond to the Central AI ecoregion. The Southern Bering Sea corresponds to the Eastern AI ecoregion. 
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Seabirds 

Seabird Monitoring Summary from Alaska Maritime National Wildlife Refuge 

Contributed by Heather Renner and Nora Rojek, Alaska Maritime National Wildlife Refuge, Homer, AK 
Contact: heather renner@fws.gov 
Last updated: October 2018 

Description of indicator: The Alaska Maritime National Wildlife Refuge has monitored seabirds at 
colonies around Alaska in most years since the early- to mid-1970s. Time series of annual breeding success 
and phenology (and other parameters) are available from over a dozen species at eight Refuge sites in the Gulf 
of Alaska, Aleutian Islands, and Bering and Chukchi Seas (Figure 31). Monitored colonies in the Aleutian 
Islands include Buldir (western Aleutians) and Aiktak (eastern Aleutians). Reproductive success is defined 
as the proportion of nest sites with eggs (or just eggs for murres that do not build nests) that fledged a chick. 

Status and trends: Seabird reproductive success differed between the western Aleutians and eastern 
Aleutians in 2018 (Figure 32). At Buldir, fish-eating seabird species, which include tufted puffins and 
common and thick-billed murres, had low to zero productivity. Black-legged kittiwakes, storm-petrels and 
auklets (which consume a mix of fish and invertebrates) showed average to above average fledging rates. 
Timing of breeding was extremely late for most species at Buldir. At Aiktak, murres had low to zero 
productivity, but tufted puffins had high productivity that was more than 1 standard deviation (SD) above 
the long term mean. Timing of breeding was near average for all species but storm-petrels, which were late. 

Factors influencing observed trends: In general, seabirds in the Aleutians did not experience widespread 
failures like the Gulf of Alaska did during the marine heat wave of the past few years. However many seabirds 
did poorly in 2018 at Buldir and had mixed success at Aiktak, while planktivorous seabirds have remained 
generally successful. This suggests that zooplankton availability was sufficient at both sites, but that forage 
fish prey were insufficient to support chick-rearing at Buldir. 

Implications: Reproductive activity of central-place foraging seabirds can reflect ecosystem conditions at 
multiple spatial and temporal scales. Tufted puffins completely failed at Buldir only one other time, in 2011. 
In general, tufted puffins can adapt their foraging to what is available, so their failure suggests a potentially 
broad lack of prey (that includes forage fish and squid). Field crew did observe some puffins carrying prey 
to chicks, but given that all breeding was late there may have been a mismatch in prey availability and 
typical breeding. The differences in patterns of reproductive activity between Buldir and Aiktak likely 
reflect differences in ecosystem conditions between the western and eastern Aleutian Islands. 
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Figure 31: Summary of reproductive success in 2018 at long-term monitored sites on the Alaska Maritime National Wildlife Refuge. Figure 
created by AMNWR 



-100

50

200

Common Murres at Buldir

40

65

90
Thick-billed Murres at Buldir

-10

40

90
Tufted Puffins at Buldir

10

60

110 Fork-tailed Storm Petrels at Buldir

-10

45

100 Parakeet Auklets at Buldir

10

55

100
Least Auklets at Buldir

-100

50

200

Common Murres at Aiktak

10

60

110

Tufted Puffins at Aiktak

60

80

100

Fork-Tailed Storm Petrels at Aiktak

70

85

100

Leach's Storm Petrels at Aiktak

1989 1995 2000 2005 2010 2015 2018

2014-2018 Mean 2014-2018 Trend

1 s.d. above mean

1 s.d. below mean

within 1 s.d. of mean

fewer than 2 data points

increase by 1 s.d. over time window

decrease by 1 s.d. over time window

change <1 s.d. over window

fewer than 3 data points

December 2018Aleutian Islands ecosystem status report

NPFMC Bering Sea and Aleutian Islands SAFE

Figure 32: Summary of reproductive success of some seabird species at Chowiet (WGOA) and St Lazaria 
(EGOA) 
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The Marine Mammal Protection Act requires stock assessment reports to be reviewed annually for stocks 
designated as strategic, annually for stocks where there are significant new information available, and at 
least once every 3 years for all other stocks. Each stock assessment includes, when available, a description 
of the stock’s geographic range, a minimum population estimate, current population trends, current and 
maximum net productivity rates, optimum sustainable population levels and allowable removal levels, and 
estimates of annual human-caused mortality and serious injury through interactions with commercial fisheries 
and subsistence hunters. The most recent (2014) Alaska Marine Mammal stock assessment was released in 
August 2015 and can be downloaded at http://www.nmfs.noaa.gov/pr/sars/region.htm. 

There are no updates to marine mammal indicators in this year’s report, with the exception of those in the 
Report Card. See the contribution archive for previous indicator submissions at: http://access.afsc. 
noaa.gov/reem/ecoweb/index.php 

Ecosystem or Community Indicators 

Stability of Groundfish Biomass in the Aleutian Islands 

Contributed by George A. Whitehouse, Joint Institute for the Study of the Atmosphere and Ocean (JISAO), 
University of Washington, Seattle WA 
Contact: andy.whitehouse@noaa.gov 
Last updated: October 2018 

Description of indicator: The stability of the groundfish community total biomass is measured with 
the inverse biomass coefficient of variation (1 divided by the coefficient of variation of total groundfish 
biomass (1/CV[B])). This indicator provides a measure of the stability of the ecosystem and its resistance to 
perturbations. The variability of total community biomass is thought to be sensitive fishing and is expected 
to increase with increasing fishing pressure (Blanchard and Boucher 2001). This metric is calculated following 
the methods presented in Shin et al. (2010). The CV is calculated as the mean total groundfish biomass 
over the previous 10 years divided by the standard deviation over the same time span. The biomass index 
for groundfish species was calculated from the catch of the NMFS/AFSC biennial summer bottom-trawl 
survey of the Aleutian Islands. The Aleutian Islands survey time series began in 1980 and was conducted 
on a triennial basis until 2000 when it switched to a biennial schedule. The 1989 survey did not occur and 
the AI was not surveyed again until 1991, leaving a 5 year gap. Also, the 2008 survey did not occur leaving 
a 4 year gap. Additionally, the 1980 data were not available at the time this indicator was prepared so the 
time series begins in 1983. Since 10 years of data are required to calculate this metric, the indicator values 
start in 2010, the tenth time the Aleutian Islands were surveyed over the time series examined (1983–2018). 
This metric is presented as an inverse, so as the CV increases the value of this indicator decreases, and if 
the CV decreases the value of this indicator increases. 

Status and trends: The stability of groundfish biomass in the Aleutian Islands has been relatively constant 
over the time period examined (Figure 33). There has been a gradual decrease in this indicator from a high 
of 4.6 in 2010 to a low of 3.5 in 2018. However, the slope of a trendline was not significant (p > 0.05). 

Factors influencing observed trends: Fishing is expected to influence this metric as fisheries can selec-
tively target and remove larger, long-lived species effecting population age structure (Berkeley et al. 2004, 
Hsieh et al. 2006). Larger, longer-lived species can become less abundant and be replaced by smaller 
shorter-lived species (Pauly et al. 1998). Larger, longer-lived individuals help populations to endure pro-
longed periods of unfavorable environmental conditions and can take advantage of favorable conditions when 
they return (Berkeley et al. 2004). A truncated age-structure could lead to higher population variability 
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Figure 33: The stability of groundfish in the Aleutian Islands represented with the metric, one divided 
by the coefficient of variation of total groundfish biomass (1/CV[B]). Ten years of data are required to 
calculate this metric, so this time series begins in 2010 after the tenth occurrence of the NMFS/AFSC 
summer bottom-trawl survey over the time period examined (1983-2018). The dashed line represents 
the mean of the time series (2010–2018). 

(CV) due to increased sensitivity to environmental dynamics (Hsieh et al. 2006). Interannual variation 
in this metric could also be influenced by interannual variation in species abundance in the trawl survey 
catch, and patchy spatial distribution for some species. This metric, as calculated here with trawl-survey 
data, reflects the stability of the groundfish community that is represented in the catch of the GOA summer 
bottom-trawl survey. In general, as total biomass decreases species spatial distribution may contract or have 
increasingly isolated patches, both of which may lead to increased CV (Shin et al. 2010). 

Walleye pollock and Atka mackerel are two of the biomass dominant species in the catch of the Aleutian 
Islands bottom trawl survey. The first two years of the trawl survey included in this metric (1983 and 1986) 
were years dominated by walleye pollock. In subsequent years Atka mackerel had a higher biomass index 
than walleye pollock. The biomass index for Atka mackerel is generally more variable than the index for 
walleye pollock. This has resulted in the gradually decreasing values of this indicator over the time period 
examined. 

Implications: The biomass of the groundfish community in the western GOA appears to be stable over 
the time period examined. Although there are only 5 data points for this metric, there is no indication of a 
clear trend in the stability of the groundfish community biomass. 

Mean Length of the Fish Community in the Aleutian Islands 

Contributed by George A. Whitehouse1 and Geoffrey M. Lang2 

1Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle WA 
2Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine 
Fisheries Service, NOAA, Seattle WA 
Contact: andy.whitehouse@noaa.gov 
Last updated: October 2018 
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Description of indicator: The mean length of the groundfish community tracks fluctuations in the size of 
groundfish over time. This size-based indicator is thought to be sensitive to the effects of commercial fisheries 
because larger predatory fish are often targeted by fisheries and their selective removal would reduce mean 
size (Shin et al. 2005). Fish lengths are routinely recorded during the biennial NMFS bottom trawl survey 
of the Aleutians Islands. The survey time series began in 1980 and was conducted on a triennial basis until 
2000 when it switched to a biennial schedule. The 1989 survey did not occur and the AI was not surveyed 
again until 1991, leaving a 5 year gap. Also, the 2008 survey did not occur leaving a 4 year gap. The 1980 
data was not available at the time this indicator was prepared, so it begins with 1983. 
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Species-specific mean lengths are calculated for groundfish species from the length measurements collected 
during the trawl survey. The mean length for the groundfish community is calculated with the species-specific 
mean lengths, weighted by biomass indices (Shin et al. 2010) calculated from the bottom-trawl survey. This 
indicator specifically applies to the portion of the demersal groundfish community efficiently sampled with 
the trawling gear used by NMFS during the summer bottom-trawl survey of the AI and have their lengths 
regularly sampled (for complete survey details see von Szalay and Raring 2018). This includes species of 
skates, flatfishes, and roundfishes (e.g., cods, sculpins, eelpouts). Species that are predominately found in 
the pelagic environment (e.g., capelin, pelagic smelts), over untrawlable habitat (e.g., rockfishes), or are 
otherwise infrequently encountered (e.g., sharks, grenadiers, myctophids) or not efficiently caught by the 
bottom-trawling gear are excluded from this indicator. 

Status and trends: The mean length of the Aleutian Islands groundfish community in 2018 is 41.8 cm. 
This is up one cm from 2017 and is the highest value over the time series (Figure fig.ailen). This indicator has 
shown some year to year variation but has generally stayed close to the long term mean. The interannual 
variation is a reflection of the variation in the abundance of species sampled for lengths. The slope of a 
trendline was not significant (α=0.05). 
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Figure 34: Mean length of the groundfish community sampled during the NMFS/AFSC summer bottom-
trawl survey of the Aleutian Islands (1983–2018). The groundfish community mean length is weighted 
by the relative biomass of the sampled species. The dashed line represents the time series mean (1983– 
2018). 

Factors influencing observed trends: This indicator is specific to the fishes that are routinely caught 
and sampled during the NMFS summer bottom-trawl survey. The estimated mean length can be biased 
if specific species-size classes are sampled more or less than others, and is sensitive to spatial variation 
in the size distribution of species. Changes in fisheries management or fishing effort could also affect the 
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mean length of the groundfish community. Modifications to fishing gear, fishing effort, and targeted species 
could affect the mean length of the groundfish community if different size classes and species are subject to 
changing levels of fishing mortality. The mean length of groundfish could also be influenced by fluctuations 
in recruitment, where a large cohort of small forage species could reduce mean length of the community. 
Environmental factors could also influence fish growth and mean length by effecting the availability and 
quality of food, or by direct temperature effects on growth rate. 
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Implications: The mean length of the groundfish community in the Aleutian Islands has been stable over 
the bottom-trawl time series (1983–2018). There is no evidence at this time of an obvious trend in mean 
size or indication that an external pressure such as climate or fishing is affecting this indicator. 

Mean Lifespan of the Fish Community in the Aleutian Islands 

Contributed by George A. Whitehouse1 and Geoffrey M. Lang2 

1Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle WA 
2Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine 
Fisheries Service, NOAA, Seattle WA 
Contact: andy.whitehouse@noaa.gov 
Last updated: October 2018 

Description of indicator: The mean lifespan of the community is defined by Shin et al. (2010) as, 
“a proxy for the mean turnover rate of species and communities” and is intended to reflect “ecosystem 
stability and resistance to perturbations.” The indicator for mean lifespan of the groundfish community 
is modeled after the method for mean lifespan presented in (Shin et al. 2010). Lifespan estimates of 
groundfish species regularly encountered during the NMFS/AFSC biennial summer bottom-trawl survey of 
the Aleutian Islands were retrieved from the AFSC Life History Database (https://access.afsc.noaa. 
gov/reem/LHWeb/Index.php). The Aleutian Islands survey time series began in 1980 and was conducted on 
a triennial basis until 2000 when it switched to a biennial schedule. The 1989 survey did not occur and the 
AI was not surveyed again until 1991, leaving a 5 year gap. Also, the 2008 survey did not occur leaving a 4 
year gap. The 1980 data was not available at the time this indicator was prepared, so it begins with 1983. 

Status and trends: The mean lifespan of the Aleutian Islands demersal fish community in 2018 is 22.3 
which is up from 19.6 in 2016 and above the long term mean of 20.9 over the years 1983–2018 (Figure 35). 
This exhibits some interannual variation but is generally stable. The slope of a trendline was not significantly 
different from zero. 

Factors influencing observed trends: Fishing can affect the mean lifespan of the groundfish community 
by preferentially targeting larger, older fishes, leading to decreased abundance of longer-lived species and 
increased abundance of shorter-lived species (Pauly et al. 1998). Interannual variation in mean lifespan can 
be influenced by the spatial distribution of species and the differential selectivity of species to the trawling 
gear used in the survey. Strong recruitment events or periods of week recruitment could also influence the 
mean community lifespan by altering the relative abundance of age classes and species. High values in the 
early part of the time series (1983 and 1986) and in 2018 correspond to years with relatively high biomass 
indices for walleye pollock (lifespan = 31). Years with lower values (1994, 2012–2016) correspond to years 
with relatively high biomass indices for Atka mackerel (lifespan = 17). 

Implications: The groundfish mean lifespan has been generally stable over the time series of the summer 
bottom trawl survey. There is no indication at this time of an increasing or decreasing trend in mean lifespan. 
Species that are short-lived are generally smaller and more sensitive to environmental variation than larger, 
longer-lived species (Winemiller 2005). Longer-lived species help to dampen the effects of environmental 
variability, allowing populations to persist through periods of unfavorable conditions and to take advantage 
when favorable conditions return (Berkeley et al. 2004, Hsieh et al. 2006). 
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Figure 35: The mean lifespan of the western Gulf of Alaska demersal fish community (blue line), weighted 
by relative biomass calculated from the NMFS/AFSC summer bottom-trawl survey. The dashed line 
represents the mean of the time series (1984–2017) and the solid line is a trendline with slope = 0.169. 

Disease Ecology Indicators 

There are no disease ecology indicators in this year’s report. See the contribution archive for previous 
indicator submissions at: http://access.afsc.noaa.gov/reem/ecoweb/index.php 

Fishing and Human Dimensions Indicators 

Indicators presented in this section are intended to provide a summary of the status of several ecosystem-
scale indicators related to fishing and human economic and social well-being. These indicators are organized 
around objective categories derived from U.S. legislation and current management practices: 

‹ Maintaining diversity 

‹ Maintaining and restoring fish habitats 

‹ Sustainability (for consumptive and non-consumptive uses) 

‹ Seafood production 

‹ Profits 

‹ Recreation 

‹ Employment 

‹ Socio-cultural 

The indicators presented are meant to represent trends in different aspects of the general management 
objective, but some indicators are better proxies than others. For example, seafood production is a fairly 
good proxy for the production of seafood to regional, national, and international markets but ex-vessel and 
wholesale value are imperfect proxies for harvesting and processing sector profits. This suite of indicators 
will continue to be revised and updated to provide a more holistic representation of human/environment 
interactions and dependencies. 
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Time Trends in Groundfish Discards 

Contributed by Jean Lee, Resource Ecology and Fisheries Management Division, AFSC, NMFS, NOAA, and 
Alaska Fisheries Information Network, Pacific States Marine Fisheries Commission 
Contact: jean.lee@noaa.gov 
Last updated: September 2018 

Description of indicator: Estimates of groundfish discards for 1993-2002 are sourced from NMFS Alaska 
Regions blend data, while estimates for 2003 and later come from the Alaska Regions Catch Accounting Sys-
tem. These sources, which are based on observer data in combination with industry landing and production 
reports, provide the best available estimates of groundfish discards. Discard rates as shown in the figure 
below are calculated as the weight of groundfish discards divided by the total (i.e., retained and discarded) 
catch weight for the relevant area-gear-target sector. Where rates are described below for species or species 
groups, they represent the total discarded weight of the species/species group divided by the total catch 
weight of the species/species group for the relevant area-gear-target sector. These estimates include only 
catch of FMP-managed groundfish species within the FMP groundfish fisheries: not included are groundfish 
discards in the halibut fishery and discards of non-groundfish species, such as forage fish and species managed 
under prohibited species catch (PSC) limits. 

Status and trends: Since 1993 discards and discard rates of groundfish in federally-managed Alaskan 
groundfish fisheries have generally declined across the trawl pollock, non-pollock trawl, and fixed gear (hook-
and-line and pot) sectors in the Aleutian Islands (AI). Over the most recent 5-year period (2013–2017), 
the annual discard biomass and discard rate in the AI fixed gear sector have averaged 1215 mT and 7%, 
respectively, compared to averages of 2438 mT and 11% over the 1993–2017 period. Discard biomass in the 
trawl pollock sector was highest during 1995 to 1997, averaging 2330 mT annually, before falling in 1998 to 
215 mT and averaging 293 mT annually from 1998 to 2017. The non-pollock trawl sector shows the steepest 
declines in discard biomass and rates. Discards in this sector peaked at 32500mT in 1996 (21% discard rate), 
and annual discard biomass and rates averaged 15300 mT and 1% from 1997 to 2007 and 4500 mT and 4% 
from 2008 to 2017. The 2016 and 2017 discard biomass (2220 mT, 2335 mT) and discard rates (2 for both 
years) reflect the lowest levels over the entire 1993-2017 period. To date in 2018, discard levels across all 
sectors appear to be consistent with levels during the previous 5-year period. 

Factors influencing observed trends: Discards of groundfish may occur for economic or regulatory 
reasons. Economic discards include discards of lower value and unmarketable fish in order to maximize 
harvest or production value. Regulatory discards are those required by regulation, such as discards of species 
where harvest has reached the allowable catch limit and which may no longer be retained. Mechanisms used 
in North Pacific groundfish fisheries for reducing discards include: 

‹ Limited access privilege programs (LAPPs), which allocate catch quotas and may reduce economic 
discards by removing the race for fish 

‹ In-season closure of fisheries once target or bycatch species quotas are reached 

‹ Minimum retention and utilization standards for certain fisheries 

‹ Maximum retainable amounts (MRAs) specifying the amounts of non-target species that harvesters 
may retain relative to other groundfish species that remain open to directed fishing. MRAs reduce 
regulatory discards by allowing for limited retention of species harvested incidentally in directed fish-
eries. 

In the Aleutian Islands fixed gear (hook-and-line and pot) sector, discards of flatfish accounted for the 
majority of discards by weight through the 1990s. Catch and discards of flatfish in the longline sablefish 
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Figure 36: Total biomass and percent of total catch biomass of FMP groundfish discarded in the fixed 
gear, pollock trawl, and non-pollock trawl sectors, 1993–2017, for the AI and central, eastern, and 
western AI subregions (data by subregion available only for 2009 and forward). Discard rates are 
calculated as total discard weight of FMP groundfish divided by total retained and discarded weight of 
FMP groundfish for the sector (includes only catch counted against federal TACs). 

fishery peaked in 1994 and generally declined following implementation of the Pacific Halibut and Sablefish 
Individual Fishing Quota (IFQ) program in 1995, possibly as a result of the slower pace of the fishery under 
the program. In the longline cod fishery, flatfish catch and discards grew steadily from 1993, peaking in 2001 
at 3250 mT of discards. Since 2002, total discard biomass of flatfish in the fixed gear sector has remained 
comparatively low due both to reductions in flatfish discard rates and generally lower catch levels across all 
managed groundfish in the AI longline cod fishery. Discards of species historically managed together as the 
other groundfish assemblage (skate, sculpin, shark, squid, and octopus) are tracked in the catch accounting 
data going back to 2003 and have accounted for the largest share of discards in this sector since then. 
Discard rates for sculpin are typically 100%; there has been limited retention of skate and octopus due to 
the existence of markets for these species. 

Full retention requirements for pollock and Pacific cod were implemented in 1998 for federally-permitted 
vessels fishing for groundfish, leading to declines in discards of these species across all sectors in the Aleutian 
Islands. The trawl pollock fishery was closed between 1998 and 2004 for Steller Sea lion recovery and has 
had minimal to no participants since reopening in 2005. 

In the non-pollock trawl sector, Atka mackerel and rockfish have historically accounted for the largest 
amounts of catch and discards by weight. Amendments 79 and 80 to the BSAI Groundfish FMP established 
a Groundfish Retention Standard Program and a cooperative-based limited access privilege program (LAPP) 
for the non-AFA BSAI trawl catcher processor fleet, which targets Atka mackerel and Pacific ocean perch 
in the Aleutian Islands. Both amendments were intended in part to address the high rates of discard in this 
fleet. Across the entire non-pollock trawl sector, discard rates for rockfish and flatfish in particular have 
seen a marked decline since the associated measures went into effect in 2008. Discard rates in this sector for 
groundfish species groups other than those in the other groundfish assemblage have been at or below 10% 
for the last several years. 

Implications: Minimizing fishery discards is recognized as an ecological, economic, and moral imperative in 
various multilateral initiatives and in National Standard 9 of the Magnuson-Stevens Fishery Conservation and 
Management Act (Alverson et al. 1994, FAO 1995, NMFS 2011). Fishery bycatch adds to the total human 
impact on biomass without providing a benefit to the Nation and as such are seen as “contrary to responsible 
stewardship and sustainable utilization of marine resources” (Kelleher 2005). Bycatch may constrain the 
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Figure 37: Total biomass of FMP groundfish discarded in the AI by sector and week of the fishing 
season, 2013–2018 (data for 2018 is shown through week 36). Plotted heights are not comparable across 
fisheries. 

utilization of target species and increases the uncertainty around total fishing-related mortality, making it 
more difficult to assess stocks, define overfishing levels, and monitor fisheries for overfishing (Alverson et al. 
1994, NMFS 2011, Clucas 1997). Although ecosystem effects of discards are not fully understood, discards 
of whole fish and offal have the potential to alter energy flow within ecosystems and have been observed to 
result in changes to habitat (e.g., oxygen depletion in the benthic environment) and community structure 
(e.g., increases in scavenger populations) (Queirolo et al. 1995; Alverson et al. 1994; Catchpole, Frid, and 
Gray 2006; Zador and Fitzgerald 2008). Monitoring discards and discard rates provides a means of assessing 
the efficacy of measures intended to reduce discards and increase groundfish retention and utilization. 
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Contributed by George A. Whitehouse1, Sarah Gaichas2, and Stephani Zador3 

1Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle 
WA, 
2Ecosystem Assessment Program, Northeast Fisheries Science Center, National Marine Fisheries Service, 
NOAA, Woods Hole MA, 
3Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine 
Fisheries Service, NOAA 
Contact: andy.whitehouse@noaa.gov 
Last updated: August 2018 

Description of indicator: We monitor the catch of non-target species in groundfish fisheries in the Aleutian 
Islands (AI) ecosystem. The catch could not be summarized at the ecoregion level due to confidentiality 
issues and is instead presented at the LME level (i.e., AI). In previous years we included the catch of 
“other” species, “non-specified” species, and forage fish in this contribution. However, stock assessments 
have now been developed or are under development for all groups in the “other species” category (sculpins, 
unidentified sharks, salmon sharks, dogfish, sleeper sharks, skates, octopus, squid), some of the species 
in the “non-specified” group (giant grenadier, other grenadiers), and forage fish (e.g., capelin, eulachon, 
Pacific sand lance, etc.), therefore we no longer include trends for these species/groups here (see AFSC 
stock assessment website at http://www.afsc.noaa.gov/refm/stocks/assessments.htm). Invertebrate 
species associated with habitat areas of particular concern, previously known as HAPC biota (seapens/whips, 
sponges, anemones, corals, and tunicates) are now referred to as structural epifauna. Starting with the 2013 
Ecosystem Considerations Report, the three categories of non-target species we continue to track here are: 

1. Scyphozoan jellyfish 

2. Structural epifauna (seapens/whips, sponges, anemones, corals, tunicates) 

3. Assorted invertebrates (bivalves, brittle stars, hermit crabs, miscellaneous crabs, sea stars, marine 
worms, snails, sea urchins, sand dollars, sea cucumbers, and other miscellaneous invertebrates). 

Total catch of non-target species is estimated from observer species composition samples taken at sea during 
fishing operations, scaled up to reflect the total catch by both observed and unobserved hauls and vessels 
operating in all FMP areas. Catch since 2003 has been estimated using the Alaska Region’s Catch Accounting 
System. This sampling and estimation process does result in uncertainty in catches, which is greater when 
observer coverage is lower and for species encountered rarely in the catch. 

Status and trends: The catch of Scyphozoan jellyfish in the AI gradually decreased from 2011–2015, then 
increased in 2016 and increased again to a peak value in 2017 (Figure 38). Scyphozoan jellyfish are primarily 
caught in the pollock fishery. The catch of structural epifauna in the AI has been variable from 2011–2017, 
with a peak catch in 2015. The catch of structural epifauna in 2016 was half of the catch in 2015. The catch 
of structural epifauna in 2017 is the third highest over this time period. Sponge comprise the majority of 
the structural epifauna catch, followed by corals and bryozoans. These species are primarily caught in the 
Atka mackerel and rockfish fisheries. The catch of assorted invertebrates in the AI increased from 2011 to 
2013 then dropped sharply in 2014. The catch has remained relatively constant from 2015 to 2017. Sea stars 
dominate the assorted invertebrate catch in each year. Sea stars are caught primarily in the Pacific cod and 
halibut fisheries. 

Factors influencing observed trends: The catch of non-target species may change if fisheries change, if 
ecosystems change, or both. Because non-target species catch is unregulated and unintended, if there have 
been no large-scale changes in fishery management in a particular ecosystem, then large-scale signals in the 
non-target catch may indicate ecosystem changes. Alternatively, changes in allowable catch for target species, 
external market forces, fishing effort, or fishing gear restrictions can affect the catch of non-target species. 
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Figure 38: Total catch of non-target species (tons) in AI groundfish fisheries (2011–2017). Please note 
the different y-axis scales between regions and species groups. 

Catch trends may be driven by changes in biomass or changes in distribution (overlap with the fishery) 
or both. Fluctuations in the abundance of jellyfish in the EBS are influenced by a suite of biophysical 
factors affecting the survival, reproduction, and growth of jellies including temperature, sea ice phenology, 
wind-mixing, ocean currents, and prey abundance (Purcell, 2005; Brodeur et al., 2008). 

Implications: The catch of structural epifauna species and assorted invertebrates is very low compared with 
the catch of target species. The recent increase in the catch of scyphozoan jellies may reflect interannual 
variation in jellyfish biomass or changes in the overlap with fisheries. Abundant jellyfish may have a negative 
impact on fishes as they compete with planktivorous fishes for prey resources (Purcell and Sturdevant, 2001), 
and additionally, jellyfish may prey upon the early life history stages (eggs and larvae) of fishes (Purcell and 
Arai, 2001; Robinson et al., 2014). 
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Contributed by Anne Marie Eich1, Stephani Zador2, Shannon Fitzgerald2 and Jennifer Mondragon1 

1 Sustainable Fisheries Division, Alaska Regional Office, National Marine Fisheries Service, NOAA 
2Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine 
Fisheries Service, NOAA 
Contact: annemarie.eich@noaa.gov 
Last updated: August 2018 

Description of indicator: This report provides estimates of the numbers of seabirds caught as bycatch in 
commercial groundfish fisheries operating in federal waters of the U.S. Exclusive Economic Zone surrounding 
the Aleutian Islands for the years 2007 through 2017. Estimates of seabird bycatch from earlier years using 
different methods are not included here. Fishing gear types represented are demersal longline, pot, pelagic 
trawl, and non-pelagic trawl. These numbers do not apply to gillnet, seine, or troll fisheries. Data collection 
on the Pacific halibut longline fishery began in 2013 with the restructured observer program, although some 
small amounts of halibut fishery information were collected in previous years when an operator had both 
halibut and sablefish individual fishing quota (those previous years of halibut data, from 2007–2012, are not 
included in the data presented in this report). 

Estimates are based on two sources of information, (1) data provided by NMFS-certified fishery observers 
deployed to vessels and floating or shoreside processing plants (AFSC, 2011), and (2) industry reports of catch 
and production. The NMFS Alaska Regional Office Catch Accounting System (CAS) produces the estimates 
(Cahalan et al., 2014, 2010). The main purpose of the CAS is to provide near real-time delivery of accurate 
groundfish and prohibited species catch and bycatch information for inseason management decisions. It is 
also used for the provision of estimates of non-target species (such as invertebrates) and seabird bycatch 
in the groundfish fisheries. The CAS produces estimates based on these two current data sets, which may 
change over time. Changes in the data from one reporting year to another are due to errors that were 
discovered through additional data quality checks, use of data for analysis, or issues with the data that come 
to light. Examples of the possible changes in the underlying data include: changes in species identification; 
deletion of data sets where data collection protocols were not properly followed; and changes in the landing 
or at-sea production reports where data entry errors were found. 

Status and trends: The numbers of seabirds estimated to be caught incidentally in the Aleutian Islands 
fisheries in 2017 increased from that in 2016, and exceeded the 2007–2016 average of 475 by 174% (Table 
3; Figure 39). Notably, 2017 experienced the highest number of birds estimated to be caught incidentally 
in the Aleutian Islands fisheries in this time series, 2007–2017. This increase was largely due to an increase 
in shearwater bycatch. In 2017, the number of shearwaters increased by 721% compared to that of the 
2007–2016 average of 129 and by 474% compared to 2016. Besides shearwaters, northern fulmars were the 
most common species group caught incidentally. No short-tailed albatross or black-footed albatross were 
caught, and a relatively low number of Laysan albatross were caught incidentally. The estimated numbers 
of birds caught incidentally in the Aleutian Islands was less than that in the Gulf of Alaska and Bering Sea, 
as has been the case in all years in this time series, with the exception of two years where Gulf of Alaska 
bycatch totals were lower (2010 and 2015; Figure 39). Although the number of albatross caught incidentally 
is highest in the Gulf of Alaska, the number of albatross caught in the Aleutian Islands is greater than that 
in the eastern Bering Sea, as has been the case in all but three years in this time series (2007, 2011, and 
2017; Figure 40). 

Factors influencing observed trends: There are many factors that may influence annual variation in 
bycatch rates, including seabird distribution, population trends, prey supply, and fisheries activities. For 
example, a marked decline in overall numbers of birds caught after 2002 reflected the increased use of seabird 
mitigation devices. A large portion of the freezer longline fleet adopted these measures in 2002, followed by 
regulation requiring them for the rest of the fleet beginning in February 2004. Since 2002, seabird bycatch 
estimates have varied annually but have not returned to the level seen prior to the use of seabird mitigation 
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Figure 39: Total estimated seabird bycatch in eastern Bering Sea (EBS), Aleutian Islands (AI), and 
Gulf of Alaska (GOA) groundfish fisheries, all gear types combined, 2007 to 2017. 

Figure 40: Total estimated albatross bycatch in eastern Bering Sea (EBS), Aleutian Islands (AI), and 
Gulf of Alaska (GOA) groundfish fisheries, all gear types combined, 2007 to 2017. 

devices. Since 2004, work has continued on developing new and refining existing mitigation gear (Dietrich 
and Melvin, 2008). 

The longline fleet has traditionally been responsible for about 90% of the overall seabird bycatch in Alaska, 
as determined from the data sources noted above. However, standard observer sampling methods on trawl 
vessels do not account for additional mortalities from net entanglements, cable strikes, and other sources. 
Thus, the trawl estimates may be downward biased. For example, the 2010 estimate of trawl-related seabird 
mortality is 823, while the additional observed mortalities (not included in this estimate and not expanded 
to the fleet) were 112 (S. Fitzgerald, pers. comm.). Observers now record the additional mortalities they see 
on trawl vessels and the AFSC Seabird Program has contracted an analyst to work on how these additional 
numbers can be folded into an overall estimate. The challenge to further reduce seabird bycatch is great 
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Table 3: Estimated seabird bycatch in the Aleutian Islands groundfish fisheries for all gear types, 2007 
through 2017. Note that these numbers represent extrapolations from observed bycatch, not direct 
observations. See text for estimation methods. 

Species Group 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

Unidentified Albatrosses 0 0 0 0 0 0 0 22 0 0 0 
Short-tailed Albatross 0 0 0 0 0 0 0 0 0 0 0 
Laysan Albatross 11 51 35 122 12 76 108 50 150 69 14 
Black-footed Albatross 0 0 0 0 5 0 12 7 19 0 0 
Northern Fulmar 77 308 306 368 50 15 34 56 974 72 221 
Shearwaters 734 39 49 88 42 60 0 68 23 184 1,056 
Storm Petrels 0 44 0 0 0 0 0 0 0 0 0 
Gulls 38 19 36 175 22 12 23 0 37 4 0 
Kittiwakes 0 0 0 0 0 0 0 0 0 0 0 
Murres 0 0 0 0 0 0 0 0 0 0 0 
Puffins 0 0 0 0 0 0 0 0 0 0 0 
Auklets 0 0 0 0 0 0 0 2 0 0 2 
Other Birds 0 0 0 0 0 0 0 0 0 0 0 
Unidentified Birds 5 1 7 17 0 3 8 0 0 0 10 

Grand Total 865 462 433 770 131 166 185 205 1,203 329 1,303 

given the rare nature of the event. For example, (Dietrich and Fitzgerald, 2010) found in an analysis of 
35,270 longline sets from 2004 to 2007 that the most predominant species, northern fulmar, only occurred 
in 2.5% of all sets. Albatross, a focal species for conservation efforts, occurred in less than 0.1% of sets. 
However, given the vast size of the fishery, the total estimated bycatch can add up to hundreds of albatross 
or thousands of fulmars (Eich et al., 2017). 

Implications: The increase in the number of estimated seabirds caught incidentally in the Aleutian Islands 
in 2017 relative to the year before was primarily due to a dramatic increase in shearwater bycatch. Estimated 
seabird bycatch also increased from 2016 to 2017 in the Gulf of Alaska, but that was primarily attributed 
to increased numbers of black-footed albatross and northern fulmar. Estimated seabird bycatch decreased 
from 2016 to 2017 in the eastern Bering Sea, but 2016 had an unusually large number of shearwaters caught 
incidentally; the 2017 seabird bycatch estimates were closer to what is normally seen in that region. These 
differences indicate localized changes in the three different regions regarding seabird distribution, fishing 
effort, and/or seabird prey supply, all of which could impact bycatch. 

The effects of the “Warm Blob”, that resulted in an extreme marine heat wave from 2014–2016, appeared 
to be moderating and dissipating in 2017 (Zador and Yasumiishi, 2017). The warm temperatures caused 
variability in prey availability for seabirds. Over the last few years, seabird die-offs appear to have increased, 
presumably linked to the extreme marine heat wave from 2014–2016. Numerous seabirds have been reported 
dead, in poor body condition, or in reproductive failure (Zador and Yasumiishi, 2017; Siddon et al., 2017; K. 
Kuletz, pers comm.). These seabirds include northern fulmars, murres, storm petrels, short-tailed shearwa-
ters, black-legged kittiwakes, auklets, gulls, and horned puffins. Examined birds ultimately died of starvation 
or drowning, but underlying factors contributing to the die-off have yet to be determined (K. Kuletz, pers 
comm.). 

It is difficult to determine how seabird bycatch numbers and trends are linked to changes in ecosystem 
components because seabird mitigation gear is used in the longline fleet. There does appear to be a link 
between poor ocean conditions and the peak bycatch years, on a species-group basis. Fishermen have noted 
in some years that the birds appear starved and attack baited longline gear more aggressively. From year to 
year, broad changes in total seabird bycatch for all regions combined, up to 5,746 birds per year, occurred 
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between 2007 and 2017. This probably indicates changes in food availability rather than distinct changes 
in how well the fleet employs mitigation gear. A focused investigation of this aspect of seabird bycatch is 
needed and could inform management of poor ocean conditions if seabird bycatch rates (reported in real 
time) were substantially higher than normal. 
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Areas Closed to Bottom Trawling in the BSAI and GOA 

Contributed by John Olson, Habitat Conservation Division, Alaska Regional Office, National Marine Fish-
eries Service, NOAA 
Contact: john.v.olson@noaa.gov 
Last updated: October 2018 

Description of indicator: Many trawl closures have been implemented to protect benthic habitat or 
reduce bycatch of prohibited species (i.e., salmon, crab, herring, and halibut) (Figure 41, Table 4). Some of 
the trawl closures are in effect year-round while others are seasonal. In general, year-round trawl closures 
have been implemented to protect vulnerable benthic habitat. Seasonal closures are used to reduce bycatch 
by closing areas where and when bycatch rates had historically been high. 

Status and trends: Additional measures to protect the declining western stocks of the Steller sea lion 
began in 1991 with some simple restrictions based on rookery and haulout locations; in 2000 and 2001 more 
specific fishery restrictions were implemented. In 2001, over 90,000 nm2 of the Exclusive Economic Zone 
(EEZ) of Alaska was closed to trawling year-round. Additionally, 40,000 nm2 were closed on a seasonal basis. 
State waters (0-3 nmi) are also closed to bottom trawling in most areas. A motion passed the North Pacific 
Management Council in February 2009 which closed all waters north of the Bering Strait to commercial 
fishing as part of the development of an Arctic Fishery management plan. This additional closure adds 
148,300 nm2 to the area closed to bottom trawling year round. 

In 2010, the Council adopted area closures for Tanner crab east and northeast Kodiak Island. Federal waters 
in Marmot Bay are closed year round to vessels fishing with nonpelagic trawl gear. In two other designated 
areas, Chiniak Gully and ADF&G statistical area 525702, vessels with nonpelagic trawl gear can only fish if 
they have 100% observer coverage. To fish in any of the three areas, vessels fishing with pot gear must have 
minimum 30% observer coverage. 

Implications: With the Arctic FMP closure included, almost 65% of the U.S. EEZ of Alaska is closed to 
bottom trawling. For additional background on fishery closures in the U.S. EEZ off Alaska, see Witherell 
and Woodby (2005). 

Steller Sea Lion closure maps are available here: 

http://www.fakr.noaa.gov/sustainablefisheries/sslpm/atka_pollock.pdf 

http://www.fakr.noaa.gov/sustainablefisheries/sslpm/pcod_nontrawl.pdf 

http://www.fakr.noaa.gov/sustainablefisheries/sslpm/cod_trawl.pdf 
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Figure 41: Year-round groundfish closures in the U.S. Exclusive Economic Zone (EEZ) off Alaska, excluding most SSL closures. 
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Contributed by John V. Olson 
Habitat Conservation Division, Alaska Regional Office, National Marine Fisheries Service, NOAA 
Contact: john.v.olson@noaa.gov 
Last updated: October 2018 

Description of indicator: Fishing gear can impact habitat used by a fish species for the processes 
of spawning, breeding, feeding, or growth to maturity. This indicator uses output from the Fishing 
Effects (FE) model to estimate the area of geological and biological features disturbed across 
Alaska’s Large Marine Ecosystems, utilizing spatially-explicit VMS data. The time series for this 
indicator is available since 2003, when widespread VMS data became available. 

Status and trends: The percent of area disturbed due to commercial fishing interactions (pelagic 
and non-pelagic trawl, longline, and pot) decreased steadily from 2008 to the present in the Bering 
Sea, with slightly decreasing or steady trends in the Gulf of Alaska and Aleutian Islands (Figures 
42 and 43). 

Figure 42: Percent habitat reduction, all gear types combined, from 2003 through 2017. 

Factors influencing observed trends: Trends in seafloor area disturbed can be affected by 
numerous variables, such as fish abundance and distribution, management actions (e.g., closed 
areas), changes in the structure of the fisheries due to rationalization, increased technology (e.g., 
increased ability to find fish), markets for fish products, and changes in vessel horsepower and 
fishing gear. Intensive fishing in an area can result in a change in species diversity by attracting 
opportunistic fish species which feed on animals that have been disturbed by fishing activity, or 
by reducing the suitability of habitat used by some species. It is possible that increased effort in 
fisheries that interact with both living and non-living bottom substrates could result in increased 
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habitat loss/degradation due to fishing gear effects. The footprint of habitat damage varies with 
gear (type, weight, towing speed, depth of penetration), the physical and biological characteristics 
of the areas fished, recovery rates of living substrates in the areas fished, and management changes 
that result in spatial redistribution of fishing effort. 
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Between 2003 and 2008, variability in area disturbed was driven largely by the seasonality of fishing 
in the Bering Sea. In 2008, Amendment 80 was implemented, which allocated BSAI Yellowfin sole, 
Flathead sole, Rock sole, Atka mackerel, and Aleutian Islands Pacific ocean perch to the head 
and gut trawl catcher processor sector, and allowed qualified vessels to form cooperatives. The 
formation of cooperatives reduced overall effort in the fleet while maintaining catch levels. In 
2010, trawl sweep gear modifications were implemented on non-pelagic trawls in the Bering Sea, 
resulting in less gear contacting the seafloor and less habitat impact. Trawl sweep modifications 
were implemented in the Gulf of Alaska in 2014. 

Figure 43: Map of percentage area disturbed per grid cell for all gear types. Effects are cumulative, and 
consider impacts and recovery of features from 2003 to 2017. 

Implications: The effects of changes in fishing effort on habitat are largely unknown, although 
our ability to quantify those effects has increased greatly with the development of a Fishing Effects 
model as a part of the 2015 EFH Review (ftp://ftp.library.noaa.gov/noaa_documents.lib/ 
NMFS/TM_NMFS_AFKR/TM_NMFS_FAKR_15.pdf). The 2005 EFH FEIS, 2010 EFH Review, and 2015 
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EFH Review concluded that fisheries do have long term effects on habitat, and these impacts were 
determined to be minimal and not detrimental to fish populations or their habitats. These previous 
EFH analyses indicated the need for improved fishing effects model parameters. With the FE model, 
our ability to analyze fishing effects on habitat has grown exponentially. Vessel Monitoring System 
data provides a much more detailed treatment of fishing intensity, allowing better assessments 
of the effects of overlapping effort and distribution of effort between and within grid cells. The 
development of literature-derived fishing effects database has increased our ability to estimate 
gear-specific susceptibility and recovery parameters. The distribution of habitat types, derived 
from increased sediment data availability, has improved. The combination of these parameters has 
greatly enhanced our ability to estimate fishing impacts. 
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New methods and criteria were developed to evaluate whether the effects of fishing on EFH are 
more than minimal and not temporary on managed fish stocks in Alaska. Criteria were developed 
by and reviewed by the Council and its advisory committees in 2016, and stock assessment authors 
in 2017. In April 2017, based on the analysis with the FE model, the Council concurred with the 
Plan Team consensus that the effects of fishing on EFH do not currently meet the threshold of 
more than minimal and not temporary, and mitigation action is not needed at this time. 

Although the impacts of fishing across the domain are very low, it is possible that localized impacts 
may be occurring. The issue of local impacts is an area of active research. 
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Table 4: Time series of groundfish trawl closure areas in the BSAI and GOA, 1995-2017. LLP= License 
Limitation Program; HCA = Habitat Conservation Area; HCZ = Habitat Conservation Zone. 

Area Year Location Season Area size Notes 

BSAI 1995 Area 512 year-round 8,000 nm2 closure in place since 
1987 

Area 516 3/15-6/15 4,000 nm2 closure in place since 
1987 

Chum Salmon Savings Area 8/1-8/31 5,000 nm2 re-closed at 42,000 
chum salmon 

Chinook Salmon Savings trigger 9,000 nm2 closed at 48,000 Chi-
Area nook salmon 
Herring Savings Area 
Zone 1 
Zone 2 
Pribilofs HCA 
Red King Crab Savings Area 

trigger 
trigger 
trigger 
year-round 
year-round 

30,000 nm2 

30,000 nm2 

50,000 nm2 

7,000 nm2 

4,000 nm2 

trigger closure 
trigger closure 
trigger closure 

pelagic trawling al-
lowed 

Walrus Islands 
SSL Rookeries 

5/1-9/30 
seasonal ext. 

900 nm2 

5,100 nm2 
12 mile no-fishing zones 
20 mile extensions at 8 
rookeries 

1996 Nearshore Bristol Bay Trawl year-round 19,000 nm2 expanded area 512 clo-
Closure sure 
C. opilio bycatch limitation trigger 90,000 nm2 trigger closure 
zone 

2000 Steller Sea Lion protections 
Pollock haulout trawl exclu- * No trawl all year 11,900 nm2 

sion zones for EBS, AI * areas 
include GOA 

No trawl (Jan-June)* 
No Trawl Atka Mackerel 

14,800 nm2 

29,000 nm2 

restrictions 
2006 Essential Fish Habitat 

AI Habitat Conservation No bottom trawl all year 279,114 nm2 

Area 
AI Coral Habitat Protection No bottom contact gear 110 nm2 

Areas 
Bowers Ridge Habitat Con-

all year 
No mobile bottom tend- 5,286 nm2 

2008 
servation Zone 
Northern Bering Sea Re-

ing fishing gear 
No bottom trawl all year 66,000 nm2 

search Area 
Bering Sea HCA 
St. Matthews HCA 
St. Lawrence HCA 
Nunivak/Kuskokwim Closure 

No bottom trawl all year 
No bottom trawl all year 
No bottom trawl all year 
No bottom trawl all year 

47,100 nm2 

4,000 nm2 

7,000 nm2 

9,700 nm2 

Area 
Arctic 
GOA 

2009 
1995 

Arctic Closure Area 
Kodiak King Crab Protection 

No Commercial Fishing 
year-round 

148,393 nm2 

1,000 nm2 red king crab closures, 
Zone Type 1 
Kodiak King Crab Protection 2/15-6/15 500 nm2 

1987 
red king crab closures, 

1998 

Zone Type 2 
SSL Rookeries 
Southeast Trawl Closure 

year-round 
year-round 

3,000 nm2 

52,600 nm2 

1987 
10 mile no-trawl zones 
adopted as part of the 
LLP 

Sitka Pinnacles Marine re- year-round 3.1 nm2 

serve 
2000 Pollock haulout trawl exclu- No trawl all year 11,900 nm2* 

sion zones for GOA* areas in-
clude EBS, AI 

No trawl (Jan-June) 14,800 nm2 

2006 Essential Fish Habitat 
GOA Slope Habitat Conser- No bottom trawl all year 2,100 nm2 

vation Area 
GOA Coral Habitat Protec- No bottom tending gear 13.5 nm2 

tion Measures 
Alaska Seamount Habitat 

all year 
No bottom tending gear 5,329 nm2 

2010 
Protection Measures 
Marmot Bay Tanner Crab 

all year 
No bottom trawl all year 112 nm2 

Protection Area 
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Fish Stock Sustainability Index and Status of Groundfish, Crab, Salmon, and Scallop 
Stocks 

Contributed by George A. Whitehouse 
Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, 
Seattle, WA 
Contact: andy.whitehouse@noaa.gov 
Last updated: July 2018 

Description of indicator: The Fish Stock Sustainability Index (FSSI) is a performance measure 
for the sustainability of fish stocks selected for their importance to commercial and recreational fish-
eries (http://www.nmfs.noaa.gov/sfa/fisheries_eco/status_of_fisheries). The FSSI will 
increase as overfishing is ended and stocks rebuild to the level that provides maximum sustainable 
yield. The FSSI is calculated by awarding points for each fish stock based on the following rules: 

1. Stock has known status determinations: 

(a) overfishing level is defined = 0.5 

(b) overfished biomass level is defined = 0.5 

2. Fishing mortality rate is below the “overfishing” level defined for the stock = 1.0 

3. Biomass is above the “overfished” level defined for the stock = 1.0 

4. Biomass is at or above 80% of the biomass that produces maximum sustainable yield (BMSY) 
= 1.0 (this point is in addition to the point awarded for being above the “overfished” level) 

The maximum score for each stock is 4. 

In the Alaska Region, there are 36 FSSI stocks and an overall FSSI of 144 would be achieved if 
every stock scored the maximum value, 4. Over time, the number of stocks included in the FSSI 
has changed as stocks have been added and removed from Fishery Management Plans (FMPs). 
Prior to 2015 there were 35 FSSI stocks and maximum possible score of 140. To keep FSSI scores 
for Alaska comparable across years we report the FSSI as a percentage of the maximum possible 
score (i.e., 100%). 

Additionally, there are 29 non-FSSI stocks, two ecosystem component species complexes, and Pacific 
halibut which are managed under an international agreement. None of the non-FSSI stocks are 
known to be subject to overfishing, be overfished, or to be approaching an overfished condition. 
For more information on non-FSSI stocks see the Status of U.S. Fisheries webpage. 

Within the BSAI region there are 22 FSSI stocks. The assessment for sablefish is based on aggre-
gated data from the GOA and BSAI regions. In FSSI contributions prior to 2017, the sablefish 
FSSI score was included among BSAI species. Starting with last year’s contribution sablefish was 
removed from the BSAI FSSI contribution and placed in the GOA FSSI contribution (see the Gulf 
of Alaska Ecosystem Considerations Report). With few exceptions, groundfish species (or species 
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Table 5: Summary of status for the 22 FSSI stocks in the BSAI, updated through June 2018. 

BSAI FSSI (22 stocks) Yes No Unknown Undefined N/A 

Overfishing 0 22 0 0 0 
Overfished 1 21 0 0 0 
Approaching Overfished Condition 0 21 0 0 1 

complex) in the BSAI are managed as single stocks and not separately for the Bering Sea and 
Aleutian Islands. As such, the FSSI scores are reported for the BSAI as a whole. At this time it is 
not practical to report FSSI separately for the Bering Sea or Aleutian Islands. 

Status and trends: As of June 30, 2018, no BSAI groundfish stock or stock complex is subjected 
to overfishing, is considered to be overfished, or to be approaching an overfished condition (Table 
5). Among BSAI crab stocks, the Pribilof Islands blue king crab stock is considered to be overfished 
but is not subject to overfishing. This stock is in year 4 of a rebuilding plan. 

The current overall Alaska FSSI is 135 out of a possible 144, or 93.75%, based on updates through 
June 2018 and is the highest score observed over the time period examined (Figure 44). FSSI 
increased 2.5 points from last year’s score and is the net result of increased scores for two king 
crab stocks in the EBS and a lower score for snow crab in the EBS. The overall Alaska FSSI has 
generally trended upwards from 80% in 2006 to 93.75% in 2018. 

The BSAI groundfish FSSI score is 56 out of a maximum possible 56, and BSAI king and tanner 
crabs are 28 out of a possible 32. The overall Bering Sea/Aleutian Islands score is 84 out of a 
maximum possible score of 88 (Table 6). Since 2006 the BSAI overall FSSI has increased from 74% 
up to 95.45% in 2018 (Figure 45). 
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Figure 44: The trend in overall Alaska FSSI, as a percentage of the maximum possible FSSI from 2006 
through 2018. The maximum possible FSSI is 140 for 2006 to 2014, and from 2015 on it is 144. All 
scores are reported through the second quarter (June) of each year, and are retrieved from the Status 
of U.S. Fisheries website: http://www.nmfs.noaa.gov/sfa/fisheries_eco/status_of_fisheries. 
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Factors influencing observed trends: The overall trend in Alaska FSSI has been positive over 
the duration examined here (2006-2018). The increase in overall score in 2018 is the net result of 
increased scores for two king crab stocks in the EBS and a decreased score for EBS snow crab. All 
other FSSI scores for individual stocks of crabs and groundfish are unchanged. In the EBS, the 
Pribilofs Islands blue king crab stock gained a point by no longer being subject to overfishing. The 
primary driver of decline for this stock is thought to be changes in environmental conditions that 
negatively affect reproduction. Two and a half points were gained for the Aleutian Islands golden 
king crab stock by defining the overfished state (0.5), determining the stock biomass was above the 
overfished level (1.0), and by having biomass greater than 80% of BMSY (1.0). A point was lost 
for the snow crab biomass falling below 80% of BMSY (-1.0). The net result of these changes is an 
overall increase of 2.5 points from last year. The only other stock in the EBS with an FSSI less 
than 4 is Saint Matthews Island blue king crab which loses a point for having biomass less than 
80% of BMSY. 
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Figure 45: The trend in FSSI from 2006 through 2018 for the BSAI region as a percentage of the 
maximum possible FSSI. All scores are reported through the second quarter (June) of each year, and 
are retrieved from the Status of U.S. Fisheries website: http://www.nmfs.noaa.gov/sfa/fisheries_ 
eco/status_of_fisheries. 

Implications: The majority of Alaska groundfish fisheries appear to be sustainably managed. 
No stocks in the BSAI are subject to overfishing and only a single crab stock is considered to be 
overfished (Pribilof Islands blue king crab). No other stocks or stock complexes in the BSAI are 
known to be approaching an overfished condition. 
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Table 6: BSAI FSSI stocks under NPFMC jurisdiction updated through June 2018 adapted from the Status of U.S. Fisheries website: http: 
//www.nmfs.noaa.gov/sfa/fisheries_eco/status_of_fisheries. See Box A for endnotes and definition of stocks and stock complexes. 

Stock Overfishing Overfished Approaching Action Progress B/BMSY FSSI 
Score 

Blue king crab - Pribilof Islandsa No Yes N/A Continue Year 4 0.09 2 
rebuilding of plan 

Blue king crab - Saint Matthews Island No No No N/A N/A 0.57 3 
Golden king crab - Aleutian Islands No No No N/A N/A 1.18 4 
Red king crab - Bristol Bay No No No N/A N/A 0.93 4 
Red king crab - Norton Sound No No No N/A N/A 1.29 4 
Red king crab - Pribilof Islands No No No N/A N/A 1.64 4 
Snow crab - Bering Sea No No No N/A N/A 0.60 3 
Southern Tanner crab - Bering Sea No No No N/A N/A 2 4 
BSAI Alaska plaice No No No N/A N/A 2.03 4 
BSAI Atka mackerel No No No N/A N/A 1.41 4 
BSAI Arrowtooth Flounder No No No N/A N/A 2.67 4 
BSAI Blackspotted and Rougheye Rockfishb No No No N/A N/A 0.90 4 
BSAI Flathead Sole Complexc No No No N/A N/A 2.07 4 
BSAI Rock Sole Complexd No No No N/A N/A 1.66 4 
BSAI Skate Complexe No No No N/A N/A 1.99 4 
BSAI Greenland halibut No No No N/A N/A 1.15 4 
BSAI Northern rockfish No No No N/A N/A 1.92 4 
BS Pacific cod No No No N/A N/A 1.56 4 
BSAI Pacific Ocean perch No No No N/A N/A 1.72 4 
Walleye pollock - Aleutian Islands No No No N/A N/A 1.02 4 
Walleye pollock - Eastern Bering Sea No No No N/A N/A 1.88 4 
BSAI Yellowfin sole No No No N/A N/A 1.83 4 

www.nmfs.noaa.gov/sfa/fisheries_eco/status_of_fisheries


Box A. Endnotes and stock complex definitions for FSSI stocks listed in Table xx, adapted from 
the Status of U.S. Fisheries website: http://www.nmfs.noaa.gov/sfa/fisheries_eco/status_ 
of_fisheries/ 
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(a) A new rebuilding plan for this stock was implemented January 1, 2015 but does not specify a target 
rebuilding date because it is not known when the stock is expected to rebuild. There is no directed 
fishing for the blue king crab-Pribilof Islands and the majority of blue king crab habitat is closed to 
bottom trawling, and beginning in 2015 there is a prohibition on directed cod pot fishing in the Pribilof 
Islands Habitat Conservation Zone (PIHCZ). For this stock to rebuild, the stock would likely require 
multiple years of above average recruitment and/or a change in environmental conditions to increase 
larval productivity around the Pribilof Islands. 

(b) BSAI Blackspotted and Rougheye Rockfish consists of Blackspotted Rockfish and Rougheye Rockfish. 
An assessment of the combined species provides the overfished determination, and the OFL is based on 
the combined-species assessment. 

(c) Flathead Sole Complex consists of Flathead Sole and Bering Flounder. Flathead Sole accounts for the 
overwhelming majority of the biomass and is regarded as the indicator species for the complex. The 
overfished determination is based on the combined abundance estimates for the two species; the over-
fishing determination is based on the OFL, which is computed from the combined abundance estimates 
for the two species. 

(d) Rock Sole Complex consists of Northern Rock Sole and Southern Rock Sole (NOTE: These are two 
distinct species, not two separate stocks of the same species). Northern Rock Sole accounts for the 
overwhelming majority of the biomass and is regarded as the indicator species for the complex. The 
overfished determination is based on the combined abundance estimates for the two species; the over-
fishing determination is based on the OFL, which is computed from the combined abundance estimates 
for the two species. 

(e) The Skate Complex consists of Alaska Skate, Aleutian Skate, Bering Skate, Big Skate, Butterfly Skate, 
Commander Skate, Deepsea Skate, Mud Skate, Okhotsk Skate, Roughshoulder Skate, Roughtail Skate, 
Whiteblotched Skate, and Whitebrow Skate. Alaska Skate is assessed and is the indicator species for 
this complex. 
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Economic Indicators in the Aleutian Islands Ecosystem—Landings 

Contributed by Benjamin Fissel1, Jean Lee 1,2, and Steve Kasperski1 

1Resource Ecology and Fishery Management Division, Alaska Fisheries Science Center, National 
Marine Fisheries Service, NOAA 
2Alaska Fisheries Information Network, Pacific States Marine Fisheries Commission 
Contact: ben.fissel@noaa.gov 
Last updated: September 2018 

Description of indicator: Landings are a baseline metric for characterizing commercial economic 
production in the Aleutian Islands (AI). Landings are the retained catch of fish and are plotted here 
by functional group. While many species comprise a functional group, it is the handful of species 
that fishermen target that dominate the economic metrics in each group. The primary target species 
in the apex predators functional group is Pacific cod, though there are some landings of non-halibut 
flatfish such as arrowtooth flounder. The primary target species in the pelagic foragers functional 
group are Atka mackerel, Pacific ocean perch, and northern rockfish. Catch in the benthic foragers 
functional group is split between flatfish, such as rock sole and flathead sole, and benthic rockfish, 
such as thornyhead and shortraker. The primary species caught in the motile epifauna functional 
group is king crab. Landings are plotted in log scale because of significant differences in the relative 
scale of landings across functional group. 

Status and trends: Landings in the AI are primarily from two functional groups: pelagic foragers 
and apex predators (Figure 46). Atka mackerel comprise roughly two thirds of the pelagic foragers. 
Atka mackerel landings have been fairly stable except for 2012–2015 when the Total Allowable Catch 
(TAC) was reduced to support populations of Steller sea lions. Pacific ocean perch, and northern 
rockfish make up most of the rest of the pelagic forager catch, and landings of these species have 
shown an increasing trend over time. Within the apex predator functional group, Pacific cod catch 
constitutes 70% of the total on average, but this share ranges for 50%–90% depending on both the 
volume of Pacific cod catch as well as the volume of flatfish catch. Pacific cod catches between 
2011–2017 are roughly half the level that they were in 2003–2010. Catches of apex predator flatfish 
increased significantly in 2009–2014, in part as a result of diverted effort from reduced Atka mackerel 
fishing opportunities. Relative to the preceding three functional groups, benthic forager and motile 
epifauna are caught in significantly smaller quantities. Landings of both of these functional groups 
has remained fairly stable. 
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Figure 46: Aleutian Islands fishery landings by functional group (pounds in log scale). 

Factors influencing observed trends: Pacific cod in the AI has been assessed separately from 
the eastern Bering Sea (BS) since 2013, which lowered the TAC from previous historical levels. 
Flatfish remain jointly assessed for the BS and the AI. The allocation between Pacific cod and 
flatfish comprise part of the pelagic forager, apex predators, and benthic foragers’ functional groups 
in the BS/AI that are capped at 2 million metric tons. The sum of the Allowable Biological Catches 
(ABC) for the species in the functional groups are typically above the cap, and TACs are reduced 
from the ABC by the North Pacific Fishery Management Council to meet the cap requirement. 
This cap system influences interpretation of trends in landings relative to their underlying stocks 
as changes in landings may not be the direct result of changes in biomass; even when they are, 
the changes in biomass may reflect the dynamics of the Bering Sea more than those in the AI. In 
2008 Amendment 80 to the BSAI groundfish FMP was implemented rationalizing the major flatfish 
fisheries which resulted in significant reductions in bycatch. 

Implications:Landings depict one aspect of the raw stresses from harvesting imposed on the AI 
ecosystems functional group through fishing. This information can be useful in identifying areas 
where harvesting may be impacting different functional groups in times where the functional groups 
within the ecosystem might be constrained. In the AI ecosystem, pelagic foragers make up the 
largest share of the catch, followed closely by apex predators, with motile epifauna and benthic 
foragers constituting a much smaller amount of landings in the ecosystem. Monitoring the trends 
in landings stratified by ecosystem functional group provides insight on the fishing related stresses 
on ecosystems. The ultimate impact that these stresses have on the ecosystem cannot be discerned 
from these metrics alone and must be viewed within the context of what the ecosystem can provide. 
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Contributed by Sarah P. Wise1 and Kim Sparks1,2 

1Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National 
Marine Fisheries Service, NOAA 
2Alaska Fisheries Information Network, Pacific States Marine Fisheries Commission 
Contact: sarah.wise@noaa.gov 
Last updated: August 2018 

Description of indicator: Subsistence uses of wild resources are defined as “noncommercial, 
customary and traditional uses” for a variety purposes, including nutritional, trade, and cultural 
purposes (ADF&G 2018). Rural Alaskans harvest an average of 155 pounds of fish per person per 
year (Fall et al., 2017). Salmon and halibut were chosen as representative focal species for tracking 
subsistence trends. Harvest data were compiled from the Alaska Department of Fish and Game 
(ADF&G) Division of Subsistence for years 1990–2016 (ADF&G 2018). ADF&G reports that 1994 
was the initial year data from all subsistence fisheries was available and comparable to current 
collections. Subsistence data is largely collected from household surveys in select communities. 
Halibut harvest for the Eastern Aleutians (EAI) is based on IPHC Area 4A and for the Central 
Aleutians (CAI) is based on IPHC Area 4B. Subsistence data is largely collected from household 
surveys in select communities. Only data for the EAI and CAI are presented here. 

Status and trends: Although all five species of Pacific salmon are resident in the AI, targeted 
species and number harvested varies greatly among communities. ADF&G records report an in-
crease in household permits in the EAI. When considered as a whole, salmon harvests appear to 
follow a cyclical pattern of increasing, followed by a few years of decreasing harvest (Figure 47). 
However, if sockeye salmon are removed from the analysis, there is a general pattern of declining 
harvests with the exception of 2015. The average harvest since 1990 is 5,973 salmon annually, 
with the most recent total salmon subsistence harvest in 2016 estimated at 6,430 fish. Of the 
total harvest, sockeye salmon has been removed at an increasingly greater percentage (from 50% 
to 86%) of the total salmon catch, with 2011 and 2016 being the highest years for sockeye. In 
contrast, Chinook salmon remains under 1% of total harvest, while coho salmon fluctuates from 
year to year. Chum salmon harvest has decreased slightly from 3.5% to under 1% in recent years. 
Pink salmon harvest has decreased consistently, but remained <1% of total catch. According to a 
random survey of Unalaska households in 2001, 4% of all salmon subsistence were removed from 
commercial catches, 62% were harvested with non-commercial nets, and 34% were taken with rod 
and reel (ADF&G 2018). 

103 

mailto:sarah.wise@noaa.gov


December 2018 Aleutian Islands ecosystem status report

NPFMC Bering Sea and Aleutian Islands SAFE

Figure 47: Subsistence salmon harvests between 1990–2016 in the Eastern Aleutians 

ADF&G records report a decrease in salmon permits in the CAI. In 2016 only one (1) individual 
held a subsistence salmon permit compared to 61 in 1990. In the CAI, sockeye salmon is harvested 
almost exclusively, and harvest rates are largely variable (Figure 48). The historical average since 
1990 is 241 salmon, with the most recent total salmon subsistence harvest in 2016 estimated at 0 
fish. There are no data for 1994. 

Figure 48: Subsistence salmon harvests between 1990–2016 in the Central Aleutians. 

Based on ADF&G data, statewide subsistence halibut harvest (in pounds) declined substantially 
between 2004 and 2012, with a slight uptick in 2014–2016. There were approximately 8,847 sub-
sistence permits issued in the whole of Alaska, harvesting an estimated 36,467 halibut in 2016. 
The International Pacific Halibut Commission (IPHC) reduced the suggested coastwide catch for 
2018 at 28.03 million pounds. Subsistence halibut harvests represent less than two million pounds, 
with most coming from British Columbia and the eastern Gulf of Alaska. In 2016 the total halibut 
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harvest in the EAI represented 1% of that in Alaska, following the same decreasing trend from 
2004–2016 as that observed statewide (Figure 49). The number of Subsistence Halibut Registra-
tion Certificate (SHARC) permits issued has stayed relatively stable. No subsistence harvest of 
halibut was reported in the CAI in 2016. The amount of halibut subsistence harvest substantially 
declined from 2004–2014, with the exception of 2008 (Figure 50). The number of SHARC permits 
issued has declined from 19 in 2003 to 3 in 2016. 
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Figure 49: Estimated Subsistence harvest of halibut in the Eastern Aleutians ecoregion, 2003–2012, 
2014, and 2016 (lbs. net weight). 

Figure 50: Estimated Subsistence harvest of halibut in the Central Aleutians ecoregion, 2003–2012, 
2014, and 2016 (lbs. net weight). 

Factors influencing observed trends: Salmon harvests are closely monitored and documented 
regularly. In the EAI the species composition of total salmon harvest has shifted toward more 
sockeye salmon. Interviews suggest a general preference for sockeye, which may contribute to the 
increasing trend, as could the decrease in availability of other species. In the CAI, decreases in 
salmon harvest may suggest a decrease in availability of targeted species, a reduction in reliance 
on subsistence fisheries, or reflect a decreasing number of subsistence harvesters. 
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The reasons for the decline in subsistence halibut harvest are complex and in large part related 
to participation in the survey and methodology (Fall and Lemons, 2015). Due to budgetary con-
straints, data collection efforts were reduced in size and scope, which is consistent with the decrease 
in reported harvests, suggesting that some of the decrease in halibut harvest is a result of a lower 
participation in the survey. In certain regulatory areas, there is a downturn in renewal of halibut 
permits (SHARCs) after the initial rise in participation following the start of the SHARC program 
in 2003 (Fall and Lemons, 2015). Nonrenewal of SHARCs, low survey participation rates, and 
the lack of follow-up field work indicates halibut harvest was under-estimated. In addition, survey 
methodology differed in some regions. Similarly, the decrease in response rate could suggest survey 
fatigue. In 2014, an effort was made to follow up with non-participants in some regions to complete 
the survey, increasing the reported harvest estimates. 
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Implications: Food security among subsistence users is a growing concern. Changing environ-
mental conditions are affecting fish movement, health, and abundance, directly affecting the people 
relying on subsistence fisheries to survive. Subsistence fishing and hunting represent a major source 
of food security and cultural identity for many Alaskans. Rural households rely on subsistence re-
sources to supplement food during the winter when other sources of food may be unavailable or 
prohibitively expensive (Loring and Gerlach, 2009). Equally important, subsistence practices rep-
resent a way of life which supports community bonds of sharing and inter reliance, and reinforces 
community connections to land and a shared heritage (Holen, 2014; Picou et al., 1992). More 
research is needed to determine reasons for downward trends. 

Profits 

Economic Indicators in the Aleutian Islands Ecosystem—Value and Unit Value 

Contributed by Benjamin Fissel1, Jean Lee 1,2, and Steve Kasperski1 

1Resource Ecology and Fishery Management Division, Alaska Fisheries Science Center, National 
Marine Fisheries Service, NOAA 
2Alaska Fisheries Information Network, Pacific States Marine Fisheries Commission 
Contact: ben.fissel@noaa.gov 
Last updated: September 2018 

Description of indicator: Three metrics are used to characterize the economic value derived 
from catches of commercial species in the Aleutian Islands (AI): 1) ex-vessel value, 2) first-wholesale 
value, and 3) real first-wholesale to total catch unit value. The ex-vessel value and first-wholesale 
values are aggregated by functional group. While many species comprise a functional group, those 
few targeted by fishermen dominate the economic metrics in each group. The primary target of 
apex predators is Pacific cod, and to a lesser extent arrowtooth flounder. The main target in the 
pelagic foragers are Atka mackerel, Pacific ocean perch, and northern rockfish. Catch in the benthic 
foragers is split between flatfish such as rock sole and flathead sole, and benthic rockfish such as 
thornyhead and shortraker. The main species in the motile epifauna is king crab. 

Ex-vessel value is the un-processed value of the retained catch (landings) and it can informally be 
thought of as the revenue that fishermen receive from the catch. First-wholesale value is the revenue 
from the catch after primary processing by a processor or revenue by sales of processed fish. It is a 
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more comprehensive measure of value to the fishing industry as it includes ex-vessel value as well as 
the value-added revenue from processing which goes to the processing sector. Real first-wholesale 
value to total catch unit value is the ratio of value to biomass extracted as a result of commercial 
fish harvesting. The measure of biomass extracted in this index includes retained catch, discards, 
and prohibited species catch. This metric answers the question: “how much revenue is the fishing 
industry receiving per-unit biomass extracted from the ecosystem?” 
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Status and trends: Ex-vessel value and landings trends are closely related because ex-vessel value 
is the revenue from landings. Pelagic foragers have had the highest ex-vessel value since 2010 due to 
both higher landings and prices for Atka mackerel and rockfish (Figure 107). In contrast, landings 
of apex predators have dropped since 2010 because of decreasing landings of Pacific cod. Halibut 
has significantly smaller catches than Pacific cod, but because halibut is a high priced species, it 
accounts for roughly 30–40% of the ex-vessel revenue from the apex predator functional group. 
Halibut catches have also been declining since 2010. Ex-vessel revenues in the motile epifauna 
functional group have remained fairly stable since 2010 with stable catch volumes and prices of 
king crab. Ex-vessel revenues in the benthic forager group dropped in 2014 as lower-priced flatfish 
catch has been increasing while the higher-priced rockfish catch has been decreasing. Revenues 
from benthic foragers has decreased as rockfish have a higher price than flatfish. 

Figure 51: Aleutian Islands fishery landings by functional group (pounds in log scale). 

First-wholesale revenue by functional group in the AI show similar qualitative results to the ex-
vessel indices (Figure 52). First wholesale value in the apex predator group has been decreasing 
over roughly the last decade as catches of both Pacific cod and halibut have gone down. First 
wholesale value in the pelagic forager group has been increasing with increasing prices for Atka 
mackerel and Pacific ocean perch. First-wholesale value in the benthic forager group dropped in 
2014 as production of the higher valued rockfish decreased. First-wholesale value in the motile 
epifauna group has been suppressed in many of the years in Figure 2 for confidentiality reasons due 
to an insufficient number of processors processing motile epifauna (king crab) in these years. 
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Figure 52: Aleutian Islands fishery landings by functional group (pounds in log scale). 

Although first-wholesale to total catch unit value includes discards, they currently represent a 
relatively small fraction of total catch (Figure 53). Because of the comparatively larger first-
wholesale value from pelagic foragers and apex predators, the unit value index is more heavily 
weighted towards these groups. The increase in the unit value index after 2010 is the result of 
increasing value from the pelagic foragers as prices for this group have been rising. Contrary to the 
Gulf of Alaska and Eastern Bering Sea, the first-wholesale total catch unit value in the Aleutian 
Islands has an increasing trend since 2009, with the value in 2017 being close to the all-time high 
of 2011–2012. 

Figure 53: Aleutian Islands fishery landings by functional group (pounds in log scale). 
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Factors influencing observed trends: Ex-vessel value trend differences with respect to landings 
reflect differences in the average prices of the individual species that make up the functional groups. 
Hence, landings of pelagic foragers may be larger than motile epifauna, but their ex-vessel value 
has been fairly similar for several years because motile epifauna (especially king crab) commands 
a higher price. Ex-vessel price drivers include, but are not limited to, i) demand for processed 
products, ii) volume of supply (both from the fishery and globally), iii) first-wholesale price, iv) 
inflation, v) fishing costs, and vi) bargaining power between processors and fishermen. Despite this, 
annual variation in the ex-vessel prices tends to be smaller than variations in catch and short to 
medium term variation in the landings and ex-vessel revenue indices appear similar. The long-term 
general increasing trend are the result of increasing value in the first-wholesale market as well as 
inflation. 
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Differences between first-wholesale indices and ex-vessel indices are influenced by differences in the 
amount and types of value-added processing that is done. For example, Pacific cod is processed 
in numerous product forms which can influence the revenue generated by the processing sector. 
Since the total catch in the real first-wholesale to total catch unit value metric includes discards, 
historically, decreasing discard volumes and rates has contributed to increases in the total catch 
unit value. This was observed after 1998, following the pollock and Pacific cod retention program 
and the rationalization of flatfish in 2008 via Ammendment 80. 

Implications: The economic metrics displayed here provide perspective on how the human com-
ponent of the ecosystem feeds off of and receives value from the AI ecosystem. Ex-vessel value 
is a measure of the ultimate value from the raw resources extracted, and first-wholesale value 
metrics show how humans, through processing, add value to the harvest for their own uses. In 
contrast to the landings metrics that are heavily dominated by the pelagic forager and apex preda-
tor functional groups, ex-vessel revenues and to a lesser degree first wholesale revenues are more 
evenly distributed across functional groups, which indicates the importance of the groups with 
lower landings and higher prices to the fishing sector in this ecosystem, but also the higher reliance 
on volume vs added value to generate profits. Situations in which the value of a functional group 
are decreasing but catches are increasing indicate that the per-unit value of additional catch to 
humans is declining. This information can be useful in identifying areas where fishing effort could 
be reallocated across functional groups in times where the functional groups within the ecosystem 
might be constrained while maintaining value to the human component of the ecosystem. It can 
also indicate to the industry areas where a change in the composition/variety of processed forms 
could be explored. Monitoring the economic trends stratified by ecosystem functional group pro-
vides insight on the fishing related stresses on ecosystems and the economic factors that influence 
observed fishing patterns. The ultimate impact that these stresses have on the ecosystem cannot be 
discerned from these metrics alone and must be viewed within the context of what the ecosystem 
can provide and how it can evolve. 

Recreation 

There are currently no indicators to reflect recreational fishing activity in the Aleutian Island. 
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Unemployment Trends in the Aleutian Islands 

Contributed by Anna Lavoie 
Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National 
Marine Fisheries Service, NOAA 
Contact: anna.lavoie@noaa.gov 
Last updated: September 2018 

Description of indicator: Unemployment, is a significant factor in the AI and for groundfish 
fishery management, as most of the communities in the region rely upon fisheries to support their 
economies. Employment in this region is important for population retention and community vi-
ability (Rasmussen et al. 2015). Advancements in socio-ecological systems (SES) research has 
demonstrated the importance of incorporating social variables in ecosystem management and mon-
itoring, and unemployment reflects the economic setting of a SES (Turner et al. 2003; Ostrom 
2007). For example, variation in resource access, availability, and/or employment opportunities 
may influence human migration patterns, which in turn may decrease human activity in one area 
of an ecosystem while increasing activity in another. 

This report summarizes trends in unemployment rates over time in the Aleutian Islands chain 
including the eastern, central, and western ecoregions. The seven AI fishing communities included 
in this analysis are Attu Station, Adak, Atka, Nikolski, Unalaska/Dutch Harbor, Akutan and 
False Pass. Unemployment data was aggregated and weighted to account for varying community 
populations across the Alaska East Boroughs and Aleutians West Census Areas. Estimates are 
presented annually from 1990–2017 (ADLWD 2018). 

Status and trends: Unemployment rates in the AI, between 1990 and 2017, were lower than state 
and national rates (Figures 54–55). The eastern AI had higher unemployment rates than central 
AI. There is no update on the western AI population data as the one community (Attu Station) has 
had minimal or zero population for several years. According to the 2010 census, the population of 
21 consisted of coast guard personnel who left the area when the Casco Cove Coast Guard Station 
was closed in August 2010. 
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Figure 54: Unemployment rates for Aleutian Islands ecoregions, Alaska and the USA between 1990 and 
2017. 

Figure 55: Unemployment rates for Alaska, regions within Alaska, and the USA between 1990 and 2017. 
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Unemployment rates, as of 2017, were 2.35% in the eastern AI and 0.24% in central AI. Unem-
ployment across the AI chain peaked in 1998, 2004, 2009, and 2012 driven by eastern AI which is 
consistent with state and national trends. The AI region has had the lowest unemployment rates of 
any region of Alaska since 2014, in particular, the central AI has maintained rates less than 1.0%. 
Unemployment in the central AI decreased 2.53% between 1990 and 2017, and increased from 0.2% 
to 2.3% in the eastern AI, in accordance to AK trend but contrary to the national average. 
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Factors influencing observed trends: Alaska has experienced several boom and bust economic 
cycles. Peaks in employment occurred during the construction of the Alaska pipeline in the 1970s 
and oil boom of the 1980s, whereas unemployment peaks occurred following completion of the 
pipeline, during the oil bust of the late 1980s, and during the great recession of 2007-2009 (ADLWD 
2016) . However, during the great recession, Alaskas employment decreased only 0.4% whereas 
the national drop was 4.3% partly because of the jobs provided by the oil industry (ADLWD 
2016). Employment in the Aleutian Islands is largely driven by commercial fishing and the seafood 
processing industries, which stabilize employment in the region. Compared to other regions of 
Alaska employment is stable. Most regions are forecasted to experience job loss due to reduced oil 
revenues (ADLWD 2018). 

Implications: Fisheries contribute to community vitality of the Aleutian Islands and reduced 
fishing opportunities and employment may lead to out-migration and population decline, particu-
larly in small communities with few job alternatives (Donkersloot and Carothers 2016). Changes in 
groundfish policy and management, such as increased regulations, may have implications for these 
fishery-dependent communities. 

Socio-Cultural Dimensions 

Defining Fishing Communities 

Within the context of marine resource management, what constitutes a fishing community is com-
plex and has been long debated. Fishing communities can be defined, geographically, occupation-
ally, or based on shared practice or interests. The Magnuson Stevens Fishery and Conservation 
Act (MSA) defines fishing communities as those “substantially dependent on or substantially en-
gaged in the harvest or processing of fishery resources to meet social and economic needs, and 
includes fishing vessel owners, operators, and crew and United States fish processors that are based 
in such community” (Magnuson-Stevens Fishery Conservation and Management Act. Public Law, 
94, 265). Within the MSA, National Standard 8 requires conservation and management mea-
sures to “take into account the importance of fishery resources to fishing communities in order to: 
(1) provide for the sustained participation of such communities; and (2) to the extent practica-
ble, minimize adverse economic impacts on such communities” (MSA, National Standard 8, last 
updated 4/26/2018). Identifying and considering appropriate communities is central to effective 
marine resource management. The National Marine Fisheries Service interprets the MSA defini-
tion to emphasize the relevance of geographic place, stating “A fishing community is a social or 
economic group whose members reside in a specific location” (50 CFR 600.345–National Standard 
8 –Communities). Pacific States Marine Fisheries adheres to this definition as well, although it is 
recognized that taking social networks and shared interests into account “would result in a greater 
understanding of socioeconomic indicators”(Langdon-Pollock, 2004). While relatively easy to de-
termine, defining fishing community solely on geographical location risks excluding social networks 
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valuable to the flow of people, information, goods, and services. Some managers have turned to 
“multiple constructions of communities” (Olson, 2005) to better understand fishing communities. 
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By restricting the definition of fishing community to a geographic placeparticularly in the marine 
environment. St. Martin and Hall-Arber (2008) argue that geographically restricted notions of 
community ignore the complexity of social landscapes. The authors expand “community’ to include 
those areas, resources, and social networks on which people depend(St. Martin and Hall-Arber, 
2008). In an effort to acknowledge womens role in fisheries, Calhoun, Conway, and Russel (2016) 
discuss fishing community in terms of participation in the broader industry(Calhoun et al., 2016). 
Acknowledging power dynamics and the issue of scale when describing “fishing community’, Clay 
and Olson (2008) complicate the MSA definition, bringing forward the importance of “political, 
social, and economic relationships’. 

In the context of the Ecosystem Status Reports, fishing communities were identified by three 
criteria: 1) Geographical location, 2) Current fishing engagement (commercial and recreational); 
and 3) Historical linkages to subsistence fishing. Engagement was defined as the value of each 
indicator as a percentage of the total present in the state. The quantitative indicators used to 
represent commercial fisheries participation included commercial fisheries landings (e.g., landings, 
number of processors, number of vessels delivering to a community), those communities registered 
as homeports of participating vessels, and those that are home to documented participants in the 
fisheries (e.g., crew license holders, state and federal permit holders, and vessel owners). Recre-
ational fisheries participation included sportfish licenses sold in the community, sportfish licenses 
held by residents, and the number of charter businesses and guides registered in the community. 
Given the heavy dependence on subsistence fishing for survival in Alaska, as well as the reliance 
on river networks for marine resource extraction, a buffer area was created along coastal Alaska to 
identify those communities living near coastal resources. Up river communities with historic ties 
to subsistence fishing were included. Anchorage and Fairbanks were excluded in some analyses in 
order to avoid skewing results. 

The data used was gathered from the Alaska Department of Fish and Game Division of Subsistence 
database. A broad definition of subsistence fishing community was used for this analysis due to 
the importance of subsistence foods for daily life, particularly in rural Alaska. An estimated 36.9 
million pounds of wild foods are harvested annually by rural subsistence users. Residents of more 
populated urban areas harvest about 13.4 million pounds of wild food under subsistence, personal 
use, and sport regulations. Given the reliance on subsistence foods, all communities within 50 
miles of coastal waters were included in the analysis in order to capture subsistence use of marine 
resources. In addition, upriver communities identified as highly engaged in subsistence fisheries 
were included in the analysis. This included communities that historically fit the criteria (given 
the time period for which data is available (1991 onward). Level of engagement was evaluated by 
several criteria: 1) the number of Subsistence Halibut Registration Certificates (SHARC) issued 
to residents; 2) Total pounds harvested of all fish and marine invertebrates; 3) the number of 
salmon harvested; and 4) Pounds of marine mammals harvested. In order to document changes 
in subsistence use, communities once identified as engaged in subsistence fisheries were kept in the 
analysis regardless of changing engagement. 

Contributed by Sarah P. Wise 
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Human Population Trends in the Aleutian Islands 
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Contributed by Anna Lavoie 
Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National 
Marine Fisheries Service, NOAA 
Contact: anna.lavoie@noaa.gov 
Last updated: September 2018 

Description of indicator: Population stability and growth are an important indicators of com-
munity viability (Rasmussen et al. 2015). Human population trends in the Aleutian Islands (AI) 
are particularly relevant to groundfish fishery management because many communities in the region 
rely upon fisheries to support their local economies and to meet subsistence and cultural needs. 
Advancements in socio-ecological systems (SES) research has demonstrated the importance of in-
corporating social variables in ecosystem management and monitoring (Turner et al. 2003; Ostrom 
2007). For example, population trends may be influenced by variation in resource access or avail-
ability or employment opportunities, resulting in migration patterns which in turn may decrease 
human activity in one area of an ecosystem while increasing activity in another. 

This section summarizes trends in human population over time in the AI. The seven AI fishing 
communities included in this analysis are Attu Station, Adak, Atka, Nikolski, Unalaska/Dutch 
Harbor, Akutan and False Pass. Communities were divided into two categories as part of this 
analysis; small (population <1,500); and large (population ≥1,500). Population was calculated 
by aggregating community level data between 1890 and 1990 (DCCED 2016) and annually from 
1990–2017 (ADLWD 2018). Populations were aggregated into the western, central and eastern AI 
ecoregions. 

Status and trends: As of 2017 the total population including all AI communities was 5,755 
people. The total population of the AI has fluctuated since 1880 with the highest population 
increase of 374.0% occurring between 1960 and 1970 (Table 7 and Figure 56). The population of 
the AI increased from 1920 to 1940 and from 1960 to 1990. Between 1990 and 2017 the population 
declined by 32.4%. Notable decreases occurred between 1900 and 1910, between 1940 and 1950, and 
between 1990 and 2000. The eastern AI has had the most steady population increase between 1880 
and 2015, whereas the central and western AI have experienced large fluctuations. The western AI 
CDP of Attu Station has had a population of zero since 2011. Population trends of the AI are not 
consistent with Alaska-wide trends, where the greatest increase of 75% occurred between 1950 and 
1960. Statewide, most of the population increase was in urban areas, such as Anchorage, where 
40% of Alaskas population currently resides (ADLWD 2016a; 2016b). 
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Table 7: Aleutian Islands population 1880–2017. Percent change rates are decadal until 2010. 

Year Alaska % change AI East % change AI Central % change AI West % change AI Total % change 

1880 33426 192 132 107 431 
1890 32052 -4.11 397 106.77 132 0 101 -5.61 630 46.17 
1900 63592 98.4 488 22.92 128 -3.03 -100 616 -2.22 
1910 64356 1.2 281 -42.42 0 -99.22 281 -54.38 
1920 55036 -14.48 448 59.43 56 5500 504 79.36 
1930 59278 7.71 465 3.79 103 83.93 29 597 18.45 
1940 72524 22.35 563 21.08 89 -13.59 44 -51.72 696 16.58 
1950 128643 77.38 365 -35.17 85 -4.49 -100 450 -35.34 
1960 226167 75.81 458 25.48 119 40 577 28.22 
1970 302583 33.79 398 -13.1 2337 1863.87 2735 374 
1980 401851 32.81 1611 304.77 3408 45.83 5019 83.51 
1990 550043 36.88 3782 134.76 4731 38.82 8513 69.62 
2000 626932 13.98 5099 34.82 408 -91.38 20 8650 -35.08 
2010 710231 13.29 5456 7 387 -5.15 21 5 8895 6.1 
2017 737080 3.78 4400 -0.65 362 -6.46 0 -100 5755 -1.86 
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Figure 56: Aleutian Islands population by ecoregion and total. 

The population of most AI communities decreased between 1990 and 2017. Adaks (central AI) 
population decreased by 93.35%, Nikolski CDP by 51.43%, Atka by 44.90%, and False Pass by 
39.13%. Akutan and Unalaska (eastern AI) had steady population increases during this period 
(68.59% and 40.54% respectively). Although Indigenous Americans comprise up to 82% of the 
population of small communities in remote areas and more Native Americans reside in Alaska 
than any U.S. state (Goldsmith et al. 2004), only 42% of the AI population identified as Native 
American alone or combination with another race (DCCED 2016). The highest proportion of Native 
Americans was in Atka and Nikolski. There has been increased migration of Alaska Natives from 
rural to urban areas (Goldsmith et al. 2004; Williams 2004); the majority of population growth 
that has occurred in Alaska is of the Caucasian demographic (ADLWD 2016b). 

Factors influencing observed trends: The population decrease of the AI between 1990 and 2017 
(32.4%) was inconsistent with State trends (increase of 34.0%). The large decrease in population 
can be attributed to the closure of the Adak Naval operating base in 1997 and general migration 
from small communities to economic centers. Alaska has high rates of population turnover because 
of migration (ADLWD 2016). The main factors that affect population growth are natural increase 
(births minus deaths) and migration, with the latter being the most unpredictable aspect of popu-
lation change (Williams 2004; ADLWD 2016). In 2010, 61% of Alaskas population was born out of 
state (Rasmussen et al. 2015). In terms of natural growth, from 2010 to 2014 the average annual 
birth rate in Alaska was 1.6 per 100 people which was higher than the national rate of 1.3 (ADLWG 
2016). 

Population trends in Alaska are largely the result of changes in resource extraction and military 
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activity (Williams 2004). Historically, the gold rush of the late 19th century doubled the States 
population by 1900, and later WWII activity and oil development fueled the population growth 
(ADLWD 2016). However, in the AI, population changes were largely driven by military activities 
during WWII, the establishment of Coast Guard bases, and the development of fisheries following 
the establishment of the EEZ (late 1970s), joint ventures (1980s), and later development of the 
domestic fishery in the early 1990s . Some communities in the western and central AI declined 
in the 1990s because of Coast Guard cut-backs and military base closures (Williams 2006). For 
example, the closure of the Coast Guard base in Attu Station (during 2010) in western AI left 
the community abandoned. Similarly, Adaks population drastically declined after closure of the 
Adak Naval operating base in 1997. The influence of the fishing industry is evident in the eastern 
AI with Unalaska and Akutan, the most populous communities of the AI, showing landings for 
substantial volumes of seafood. The Aleutian Islands, and Kodiak in the Gulf of Alaska, have 
transient populations because of the seafood processing industry (Williams 2004). Factors that 
influence population shifts and migration include employment, retirement, educational choices, 
cost of living, climate, and quality of life, (Donkersloot and Carothers 2016). 
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Implications: Population shifts can affect pressures on fisheries resources, however inferences 
about human impacts on resources should account for economic shifts and global market demand 
for seafood and other extractive resources of the ecoregion. Population change in Alaska is largely 
fueled by increased net migration rather than natural increase, and there has been increased migra-
tion from rural to urban areas. This is evident with population decline of several small communities 
such as Nikolski and Atka. AI communities are among the most transient with in-migration of 
foreigners working in processing plants, yet employment in fisheries is what maintains these com-
munities, such as Unalaska and Akutan. Fisheries contribute to community vitality and changes 
in groundfish policy and management, such as increased regulations, may have implications for 
small communities of the Aleutian and Pribilof Island Community Development Association entity. 
Also, with almost half of the population of the AI being Native Alaskans and their long history of 
subsistence harvest, resource managers may benefit from working with communities holding tra-
ditional ecological knowledge (TEK) to incorporate these principles into ecosystem management 
(Huntington et al. 2004). 

K–12 School Enrollment, Graduation and Dropout rates in the Aleutian Islands 

Contributed by Sarah P. Wise1 and Kim Sparks1,2 

1Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National 
Marine Fisheries Service, NOAA 
2Alaska Fisheries Information Network, Pacific States Marine Fisheries Commission 
Contact: sarah.wise@noaa.gov 
Last updated: September 2018 

Description of indicator: Ensuring the productivity and sustainability of fishing communities 
is a core mandate of Federal fisheries management. Community vitality is evaluated here based on 
K–12 public school enrollment. Enrollment trends are particular relevant due to the value of schools 
to community cohesion and identity as well as reflecting conditions for resident families as opposed 
to the transient population. There are no schools in the Western Aleutian Islands ecoregion (WAI). 
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Public school enrollment and dropout rates were analyzed by borough and community level in order 
to examine broader regional trends as well as the social and economic vitality of individual rural 
communities. Enrollment statistics for K-12 grades by school and region were compiled for 1996– 
2018 from the Alaska Department of Education and Early Development (http://www.eed.state. 
ak.us/stats/). Current school locations and names were verified using the EPA EJ mapping tool 
(https://ejscreen.epa.gov/mapper/). The Eastern Aleutians ecoregion (EAI) is covered by two 
districts: the Aleutians East and Unalaska City. The Aleutians East school district includes two 
schools from the Gulf of Alaska (King Cove and Sand Point). Only schools that occur within the 
EAI region were analyzed (Akutan and False Pass). The WAI and Central Aleutians ecoregions 
(CAI) are within the Aleutian Region School District. The CAI includes two schools in Atka and 
one in Adak. School graduation rates are based off of the four-year adjusted cohort graduation rate, 
which was implemented in Alaska starting with the 2011–2012 school year. Graduation rates are 
reported for 2015–2017 cohorts based upon school district. Dropout rates are reported by school 
district from 1990–2017. 
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Status and trends: While Unalaska schools in the EAI have maintained relatively stable enroll-
ment since 1996, Nikolski, Akutan, and False Pass have diminished dramatically and are no longer 
viable. Nikolski closed in 2010, and False Pass had six students in 2018. Alaska schools lose state 
funding if enrollment drops below 10 students. Akutan currently has 13 students enrolled (Figure 
57). For the 2015–16 and 2016–17 cohorts in the EAI, the graduation rates in the Unalaska and 
Aleutian East school districts were at least 78.5%. The statewide average was 76.1% (2016) and 
78.2% (2017). Dropout rates vary from 0–8% for the EAI. The Unalaska school district dropout 
rate has declined since 1999 (Figure 59) and is now the lowest dropout rate compared to other 
regions. 

Both Adak and Atka schools in the CAI have experienced declining enrollment. As of 2018, Adak 
has 13students enrolled while Atka has 12 (Figure 58). Both of these communities are small and 
extremely remote; losing a school would be detrimental to either community. Graduation rates 
were at 50% in 2015, increased to 100% in 2016 and remain there. There are no data for dropout 
rates from the Aleutian Region School District in the CAI. 

Figure 57: Eastern Aleutian Islands school enrollment 1996–2018. 
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Figure 58: Central Aleutian Islands school enrollment 1996–2018. 

Figure 59: Dropout rates for Eastern Aleutian Islands school districts, 1990–2017. 

Factors influencing observed trends: The communities within the CAI and EAI can be consid-
ered either remote or extremely remote. Rural area schools are particularly vulnerable to closure, 
teacher turn over, and possible community disruption. High dependence on commercial fisheries 
and other natural resources may drive population shifts according to season and availability. Schools 
are particularly important for remote community stability, as they often serve as meeting places, 
libraries, places of lodging and provide access to the Internet. All schools in the Aleutian Islands, 
except for that in Unalaska, have fewer than 30 students enrolled, which poses a risk for educational 
stability. The reasons for decreasing enrollment likely include various social and economic drivers 
including decreasing populations, migratory patterns, resource availability, and employment. 

Implications: The closure of a school in these communities would have a profound effect, further 
discouraging families or potential families to remain in the area, amplifying the decline of local 
resident populations. School closures would discourage permanent residency, even when improved 
employment opportunities arise. Schools are cultural centers and serve as important indicators 
of social and economic viability, and community well-being (Lyson 2002, Thomas 2002, Thomas 
2005). Within rural communities in particular, schools are valuable symbols for community identity, 
autonomy, and shared social values (Peshkin, 1978, 1982, Thomas 2005). Research indicates that 
school closures negatively affect communities and student achievement (Buzzard 2016, Thorsen 

119 



2017). Patterns of diminishing enrollment and school consolidation suggest a decrease in property 
values and taxes, fragmented community, and lost business, as well as declines in reported quality 
of life scores (Sell et al. 1996, Thomas 2002). Some research finds the rate of participation in 
community organizations decreases in communities experiencing school closures (Oncescu and Giles 
2014, Sell et al. 1996). These finding suggest that reduced enrollment and school closures may flag 
disruptions in social cohesion, possibly leading to less vibrant and sustainable communities. 
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Responses to Comments from the 
Scientific and Statistical Committee 
(SSC) 
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December 2017 SSC Comments 

This year, as in the past, the Ecosystem Considerations Reports are insightful, well written and 
well edited. Both chapters were helpful in providing a context within which to assess the stocks 
of commercially harvested fish in Federal waters off Alaska. The editors and authors have been 
very responsive to the comments and suggestions provided by the SSC in 2016. Last year the 
SSC raised the question as to whether sufficient resources were being devoted to the compilation 
and editing of the Ecosystem Considerations chapters. The SSC recognizes that this year NOAA 
provided additional staff resources to sustain the improvement of these documents, and that these 
additional resources allowed for more in-depth analyses of recent environmental changes, such as 
the examination of the sudden decline in Pacific cod in the Gulf of Alaska. 

Thank you. As a result of continued staffing support from AFSC, this year we provide updates to 
the Eastern Bering Sea (Siddon & Zador), Gulf of Alaska (Zador & Yasumiishi, with Rob Suryan 
providing coordination with Gulf Watch Alaska), and Aleutian Islands (Zador & Ortiz) Ecosystem 
Status Reports. 

The SSC was pleased to see the addition of the rapid zooplankton assessments included for both 
EBS and GOA Ecosystem reports. As requested by the SSC, these data are shown with historical 
context for small and large copepods, and euphausiids. Additionally, this indicator now estimates 
abundance rather than proportional catches, which aids in interpretation. 

The RZA continues to be applied to more surveys, for example the northern Bering Sea, and 
we have also added some contextual information for zooplankton condition in the form of lipid 
percentages. We have also standardized the presentation style of maps and time-series for ease of 
interpretation moving forward. Finally, we will be able to present a comparison of RZA to fully 
processed net samples in the coming year to assess the efficacy of the RZA. 

There are expanded analyses of abundance and distribution shifts of groundfish and jellyfish from 
AFSC bottom trawl surveys. New indicators for groundfish from these surveys (mean length, lifespan 
and total biomass) have remained relatively stable over the time series. The SSC appreciates the 
inclusion of these new indicators, but suggests that even small changes could have far reaching 
implications as these are relatively gross-scale indicators. The SSC requests further development 
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of these indicators as anomalies to better discern long-term trends. The SSC looks forward to the 
eventual inclusion of comparisons of events in the different LMEs, and how events in one LME 
may affect another LME. 
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The indicators for Mean Lifespan and Mean Length of the Fish Community as well as the Stability 
of Groundfish Biomass indicator have been revised in 2018 to include both a mean and trendline over 
the respective time series to better discern long-term patterns and detect significant differences in 
the slope of the trendline. Comparisons across LMEs remains a gap in the Reports, but something 
the author and Report editors will continue to work towards for future Reports. One of the issues 
with comparisons across LMEs is that a difference in indicator value does not necessarily indicate 
that one system is healthier than the other. Differences in indicators between LMEs may reflect 
fundamental differences in the ecosystem structures and species compositions. 

The editors present a new “Groundfish Recruitment Predictions” section, which includes a new 
indicator for Pacific cod and five new indicators for walleye pollock. The SSC supports the devel-
opment of these predictions based on ecosystem indicators that are firmly grounded in mechanistic 
relationships. Effort should be directed toward the eventual incorporation of these recruitment in-
dicators in the assessment models. The SSC recommends that these species-specific predictions are 
transitioned to the ESPs (Ecosystem Socio-economic Profile) to ensure that they are considered by 
the stock assessment authors. 

The contribution authors and Report editors are maintaining open communication with stock 
assessment authors and those involved in producing the ESPs. These species-specific indicators 
will be transitioned to the appropriate ESPs as they become available. 

The SSC commends the ongoing efforts to expand the treatment of the Human Dimensions portion 
of the Ecosystem Considerations chapters. In particular, a number of new indicators have been 
incorporated. The SSC notes that development of indicators on the health of fishing communities 
lags behind that of indicators for the health of the fish stocks and that the latter were developed and 
refined over a long time period. The SSC encourages the continued development of this section and, 
in particular, the development of indicators on which the Council might be able to act in the advent of 
evidence of a problem. Specific to the human population indicators, regional characterizations mask 
rural trends relative to urban centers. The SSC recommends the inclusion of maps demonstrating 
finer scale shifts in population trends as well as school enrollment trends, both of which are strong 
indicators of community stability or vulnerability. 

The Economic and Social Sciences Research program, in collaboration with the Report editors, 
has made further improvements to the Human Dimensions indicators for 2018, although some of 
these updates are reflected in the Groundfish Economic SAFE report that will be reviewed by 
the SSC in February 2019. For this version of the report, we have (i) re-evaluated the definition 
of fishing communities and redrew the boundary for inclusion in the analysis to reflect a better 
representation of how coastal communities are impacted on an ecosystem scale for all Human 
Dimensions indicators, (ii) broadened school enrollment indicator to include “school readiness” (as 
illustrated by graduation and drop-out rates) to examine not just number of students enrolled, 
but to what degree of success were communities educating their youth, and (iii) conducted the 
analysis on an ecosystem scale, but attention was paid to community level impacts to highlight 
connectivity across regions. Additional detailed information on selected groundfish communities 
will be highlighted in the Groundfish Economic SAFE report in February. We have considered the 
use of maps to display the human dimensions indicators data and are exploring ways to incorporate 
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this type of information in future versions of the Groundfish Economic SAFE report. 
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The influences on the economic and social life in Alaskas coastal communities are many and the 
SSC cautions against facile causal interpretations. At the same time, it would be a mistake to 
dismiss the indicators presented in the chapter as being disconnected from and unrelated to the 
Councils sphere of influence. The policy choices made by the Council and the US Congress directly 
influence the possibilities presented to the communities of the North Pacific. The SSC suggests that 
the Human Dimensions ecosystem indicators be a topic for discussion by the newly formed Social 
Science Planning Team. 

The Report editors welcome collaborating with the Social Science Planning Team to best represent 
and report coastal communities and impacts of policy choices on Alaskans. 

The LEO Network is a potentially valuable resource for ecosystem considerations that invites com-
munity members to record unusual observations which are then vetted by scientific consultants before 
being published on the network. The SSC recommends the exploration of projects within this tool 
that ask specific questions to solicit relevant observations from communities. It is not clear how 
this network is publicized or the level of community awareness and involvement. Specific to the 
northern Bering Sea, the SSC endorses the Plan Team recommendation for continued evaluation 
of approaches to incorporate local ecological knowledge into the Ecosystems Considerations chap-
ters. In addition, the SSC encourages exploration of other more active approaches to gathering and 
engaging citizen science/LTK from communities. 

Community awareness of, and involvement in, efforts to engage citizen science/LTK have increased, 
both through the LEO Network and through direct communication with NOAA employees and 
Report editors. For example, the observations of pollock in Bristol Bay (see EBS Ecosystem Status 
Report) were communicated directly from a subsistence fisher to NOAA’s Alaska Regional Office 
who forwarded the contact to Elizabeth Siddon, editor of the EBS Ecosystem Status Report. That 
communication resulted in additional direct reports from fishers in the area, samples collected for 
processing at AFSC and NWFSC, and a LEO Network report. We attempted to initiate a project 
on NBS community observations but were unsuccessful this past year. However, we provide updates 
to the LEO reports again this year and will continue to pursue this tool as well as other avenues 
for communication. The Ecosystem Status Report editors believe citizen engagement will continue 
to increase as awareness increases. 

Last year the SSC raised the issue of how well report authors have managed to address the im-
plications of their indicator findings for the current year. One of the important reasons for the 
existence of the Ecosystem Considerations chapters is to provide the Council with information that 
may be relevant for adjusting the coming years harvest specifications or biological reference points. 
Thus, the indices and their implications that are most valuable will be those that provide informa-
tion that inform Council decisions. The Implications Sections that merely state that an indicator 
might be important for management are not particularly helpful. The SSC recognizes that the ed-
itors are planning to revise the instructions to authors to clarify this issue, and looks forward to 
improvements in this area. 

The Report editors continue to review Implications section for utility and relevance to adjusting 
harvest specifications or biological reference points. We provide examples of useful Implications 
and assist authors in better realizing direct implications of their indicators. It is an on-going effort. 

The editors raised the question as to the possibility of a change in the organization of the Ecosystem 
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Considerations chapters. Currently, the report is organized by trophic level, reflecting the flow of 
energy and material to fish stocks and the fishing community within each LME. The editors are 
considering reformatting by ecosystem-scale management objectives created by Congress (see Table 
1 in each of the chapters). The SSC questions the utility of the proposed change from a document 
focused on understanding of relevant portions of the marine ecosystem in which fishing is occurring 
to one that focuses more on fisheries management objectives. This organization could be appropriate 
for the fishing and human dimensions indicators, but not the physical and ecological indicators in 
the Ecosystem Indicators section. The SSC has been on record for many years in requesting that 
the Ecosystem Considerations chapters and their components follow an organization scheme based 
on trophic level. 
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The organization of the Ecosystem Status Reports remains by trophic level for physical and eco-
logical indicators and by management objectives for the human dimensions section, as was done 
for the 2017 Reports (i.e., no change). 

New this year, we are working with the AFSC communications staff to produce a “public-friendly” 
version of the ESRs. We hope to have the first edition of the EBS ESR brochure available to the 
public in January. We will be using the term Hot Topics to reflect the most important ecosystem 
assessment features for the current year. Thus, we will use Noteworthy Items as the new title for 
the former Hot Topics in the ESR assessments. This new title is more appropriate as this section is 
used for noteworthy information that cannot be presented in the format of our standard indicator 
contributions, but are not necessarily the most important topics of the year. 

SSC Comments from Dec 2016 regarding the Aleutian Islands 

The new organizational structure served to highlight the lack of information for the Aleutian Islands 
in particular and would like to encourage continued investigation into additional sources of data for 
this LME, particularly in the Western Aleutians, as patterns there appear to frequently diverge from 
that of the Central and Eastern subregions. 

The lack of information available for the Aleutian Islands, particularly relative to the Eastern 
Bering Sea and Gulf of Alaska, continues to be a challenge. This region has not been the focus of 
a large integrated reseach project as have the eastern Bering Sea and Gulf of Alaska. This is of 
particular concern as changes in fishing pressure in the Aleutians can be directly related to events 
in the eastern Bering Sea, such as the increased cod fishing described in the Noteworthy section (p. 
37). We hope to revisit the indicators selected for the report card in the next year and may need 
to reevaluate our selection with the realities of data availability in mind. 

Continuous plankton recorder (p. 62): It would be useful to provide the names of at least the most 
important (by biomass and by number) of the zooplankton species (in all regions). Large and small 
categories, especially from places that are not often or well-studied, do not tell us whether we are 
dealing with the same species in the southern Bering as on the eastern Bering Sea shelf. 

We requested these data and have included them in both the AI and GOA reports this year. 
The author emphasizes that these data require carefully interpretation as the seasonal aggregation 
can mask significant within season. For example, the copepod Neocalanus plumchrus is common in 
spring but nearly absent in late summer/fall. Also, biomass is a taxon specific value from literature, 
not actually measured. Some taxa are a group of many species, some are individual life history 
stages of a single species. 
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Weight at length of groundfish (p. 69): The reduced weight at length of many groundfish species 
suggests either that there are too many fish, or that the prey of the fish has declined. Another 
implication is that the nutritional quality of the fish taken by Steller Sea Lions in the western 
Aleutians may of low quality, an issue that other research has shown to be particularly problematic 
for juvenile sea lions. 
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We agree that this may be an implication that is of particular concern as length-weight residuals 
continue to remain negative for several groundfish species (p. 67). 

Mean weighted distributions of rockfish (p. 69): It appears that the increased temperatures encoun-
tered by the fish did not lead to a deepening of their distributions. Could this indicate that the 
temperatures encountered so far are not stressing the fish? 

While the temperatures at those depths have varied through the years, the range in temperature 
change has been small so has likely not had a measurable impact on the rockfish depth distribution. 
The range in temperature change has been higher in shallower water as expected (1.1oC at 100mm; 
0.8oC at 200m). While the temperature at depth has been roughly the same for the last 20 years, 
despite 2016 having the highest temperatures in the record. The authors suggest that increases 
in overall rockfish abundance could be pushing rockfish into shallower water and possibly deeper, 
but depths below 500 m are not sampled. Pacific Ocean perch abundance increased in 2010 in 
the Aleutian Islands Bottom Trawl Survey and has remained high so is likely contributing to this 
pattern. 
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	Region-wide 
	Region-wide 
	‹ 
	The North Paciﬁc Index (NPI) was strongly positive from fall 2017 into 2018 due to the relatively high sea level pressure in the region of the Aleutian Low, which was displaced to the northwest, over Siberia, and caused persistent warm winds from the southwest. Positive NPI is expected during La Ni˜na, but its magnitude was greater than expected. 
	‹ 
	The Aleutians Islands region experienced suppressed storminess through fall and winter 2017/2018 across the region. 
	‹ 
	The Alaska Stream appears to have been relatively diﬀuse on the south side of the eastern Aleutian Islands. 
	‹ Although the sea surface temperatures cooled in 2018, relative to the 2014–2017 warm period, the overall temperature was still warm due to heat retention throughout the water column. 
	Figure
	Figure 1: The winter North Paciﬁc Index time series. * indicates time series updated in 2018. 
	1 

	Western Aleutian Islands Ecoregion 2018 
	Western Aleutian Islands Ecoregion 2018 
	‹ While sea surface temperature declined relative to 2016, the warm water extended more deeply in 2018 than 2016. 
	‹ The reproductive success of ﬁve planktivorous seabird species at Buldir Island was average to above average in 2018, indicating that overall zooplankton availability was suﬃcient to support successful chick-ﬂedging in 2018. 
	‹ Forage ﬁsh trends as indicated in tufted puﬃn chick meals have varied over the long term, with episodic peaks lasting 1–2 years. In general, sand lance have been absent since 2009, and age-0 gadids have not been seen in great abundance since 2006. Tufted puﬃns experienced reproductive failures in 2017 and 2018, so there were few forage ﬁsh samples. The failures suggest that suﬃcient forage ﬁsh to support chick-rearing was limiting in 2017-2018. Squid were the most common prey delivered to chicks. 
	‹ The pelagic ﬁsh foraging guild biomass decreased slightly from 2016 to 2018. The decreasing trend was primarily due to declines in Atka mackerel and northern rockﬁsh biomass, as the biomass of Paciﬁc ocean perch increased from that in 2016. 
	‹ The overall biomass of the ﬁsh apex predator foraging guild continued its long term decline to the lowest level of the time series, which began in 1991. The largest declines were noted in Paciﬁc cod, while Kamchatka and arrowtooth ﬂounder biomasses increased. 
	‹ The most recent data available for otters show no trend, in contrast to the steep decline during the early 2000s. 
	‹ Steller sea lions remain below their long-term mean in this ecoregion, although there has been no signiﬁcant trend in the past 5 years. The 2016 estimate was the lowest in the time series. 
	‹ The amount of area trawled has increased since 2012, which was the last year of a dramatic 4year decline following measures aimed at increasing protection for Steller sea lions during 2012–2014. Also, commercial ﬁshing patterns may reﬂect recent changes in economics, ownership, and ﬁshing eﬀort allocation. 
	-

	‹ 
	There are no schools in the western Aleutian Islands ecoregion. 
	Figure
	Figure 2: The Aleutian Islands ecoregions. 
	P
	3 
	Figure 3: Western Aleutian Islands ecoregion indicators. * indicates time series updated in 2018. 

	Central Aleutian Islands Ecoregion 2018 
	Central Aleutian Islands Ecoregion 2018 
	‹ The pelagic ﬁsh foraging guild biomass declined overall from 2016 to 2018. Decreases were seen in all species but walleye pollock. 
	‹ The slight decrease in the ﬁsh apex predator foraging guild biomass from 2016 to 2018 was largely driven by arrowtooth and Kamchatka ﬂounder. 
	‹ The most recent data available for otters show no trend, in contrast to the steep decline during the early 2000s. 
	‹ Counts of non-pup Steller sea lions remain below the long term mean although there is no signiﬁcant trend in the past 5 years. 
	‹ Both Adak and Atka schools in the central Aleutian Islands have experienced declining enrollment over the past 2 years, approaching the 10-student threshold that risks closure of the schools, which would have negative impacts on the communities. 
	‹ The amount of area trawled has increased since 2012, which was the last year of a dramatic 4year decline following measures aimed at increasing protection for Steller sea lions during 2012–2014. Also, commercial ﬁshing patterns may reﬂect recent changes in economics, ownership, and ﬁshing eﬀort allocation. 
	-
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	Eastern Aleutian Islands Ecoregion 2018 
	Eastern Aleutian Islands Ecoregion 2018 
	‹ Relative abundances of gadids and Ammodytes (sand lance) in prey brought back to feed puﬃn chicks have shown opposite trends. Sand lance were above the long-term average in 2018. Puﬃns also had high reproductive success, indicating that forage ﬁsh were suﬃcient to support chick-rearing. 
	‹ Pollock, Atka mackerel, Paciﬁc ocean perch, and northern rockﬁsh all contributed to the increase in ﬁsh pelagic forager biomass from 2016 to 2018. This represents a gradual increase since the low estimate in 2012. 
	‹ Fish apex predator foraging guild biomass increased from the low values in 2012. Paciﬁc cod and arrowtooth ﬂounder contributed most to the increase. 
	‹ There are no available data for otters in the eastern Aleutians ecoregion. 
	‹ In contrast to the other ecoregions, non-pup counts of Steller sea lions remained high during the last count in 2015. The recent estimates have been above the long-term mean and are continuing an increasing trend. Counts were largely stable through the 1990s, but increased at a rate of 3% per year between 2000 and 2008. 
	‹ School enrollment increased overall in the past 2 years, although there is still an overall decrease in the 5-year trend because of the steep decline in enrollment in 2016. The increase in the past 2 years is primarily due to Unalaska, whereas the small communities have either closed schools (Nikolski) or are at risk of closure (False Pass and Akutan). 
	‹ 
	The amount of area trawled increased slightly in 2018 to above the long-term average. 
	6 
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	Last updated: October 2016 
	The primary intent of this assessment is to summarize and synthesize climate, biological, and ﬁshing eﬀects on the shelf and slope regions of the Aleutian Islands (AI) from an ecosystem perspective and to provide, where possible, an assessment of the possible future eﬀects of climate and ﬁshing on ecosystem structure and function. This serves the larger goal of the Ecosystem Status Reports (ESRs) to provide ecosystem context for tactical ﬁsheries management decisions. This assessment ties together the myria
	The Aleutian Islands ecosystem assessment area 
	The Aleutian Islands ecosystem assessment area 
	The Aleutian Islands ecosystem assessment and report card are presented by three ecoregions. The ecoregions were deﬁned based upon evidence of signiﬁcant ecosystem distinction from the adjacent ecoregions by a team of ecosystem experts in 2011. The team also concluded that developing an assessment of the ecosystem at this regional level would emphasize the variability inherent in this large area, which stretches 1900 km from the Alaska Peninsula in the east to the Commander Islands in the west. For the purp
	o

	The three Aleutian Islands ecoregions are deﬁned from west to east as follows (Figure 6). The Western Aleutian Islands ecoregion spans 170to 177E. These are the same boundaries as the 
	o 
	o

	8 
	North Paciﬁc Fishery Council ﬁshery management area 543. This ecoregion was considered to be distinct from the neighboring region to the east by primarily northward ﬂow of the Alaska Stream through wide and deep passes (Ladd, pers. comm.), with fewer islands relative to the other ecoregions. 
	The Central Aleutian Islands ecoregion spans 177E to 170W. This area encompasses the North Paciﬁc Fishery Council ﬁshery management areas 542 and 541. There was consensus among the team that the eastern boundary of this ecoregion occurs at Samalga Pass, which is at 169.5W, but for easier translation to ﬁshery management area, it was agreed that 170W was a close approximation. The geometry of the passes between islands diﬀers to the east and west of Samalga Pass (at least until Amchitka Pass). In the Central
	o
	o
	o
	o
	-

	The Eastern Aleutian Islands ecoregion spans 170W to False Pass at 164W. The passes in this ecoregion are characteristically narrow, shallow and long, with lateral mixing of water and northward ﬂow. The prominent source is from the Alaska Coastal Current, with a strong freshwater component. This area encompasses the NPFMC ﬁshery management areas 518, 519 (EBS) and the western half of 610 (GOA). 
	o
	o
	-

	Figure
	Figure 6: The three Aleutian Islands assessment ecoregions. 
	9 
	Figure 7: Ocean water circulation in the Aleutians. Currents are indicated with black lines. Passes are 
	P

	Current and Recent Ecosystem State 
	Current and Recent Ecosystem State 
	Most of what we can say about the Aleutians Islands ecosystem is based upon biological trends. There are large gaps in knowledge about the local physical processes and, as a result, their impact on biological processes. These gaps are largely due to geography. For example, persistent cloudiness had precluded obtaining comprehensive satellite-derived data, but this year we include a new contribution on satellite-derived sea surface temperature patterns (p. 50). Also, the sheer distances involved in surveying
	The North Paciﬁc atmosphere-ocean system in 2017–2018 was similar to that from 2016–2017, as seen in the continuation of largely warm conditions that represent little change from the generally warm period that began in 2014. The Paciﬁc Decadal Oscillation index shifted to a neutral state, reﬂecting a broad scale pattern of warmer than average temperature across the North Paciﬁc. While the warm temperatures extended deep in the water column, the surface temperatures cooled. The broad high sea level pressure 
	10 
	fall 2017 through winter 2018 likely helped to retain the heat in the water column. The Alaska Stream appears to have been relatively diﬀuse on the south side of the eastern Aleutian Islands. Eddy energy has remained low since 2012, indicating little ﬂux of volume, heat, salt, and nutrient through Amukta Pass. 
	Overall, the Aleutian ecosystem has shown a response to the recent warm years that has similar characteristics to those in the Gulf of Alaska. As the water column and surface temperatures shifted to anomalously warm in 2013/2014, the mean size of the copepod community became smaller than the long term mean, indicating that smaller-bodied copepod species became relatively abundant as is expected (Figure 9). In general, planktivorous seabirds have had fewer reproductive failures during these warm years relati
	The zooplankton community in the Aleutians is largely dominated by copepods, and the ecosystem itself is oceanic in nature. Based on bottom trawl survey data only (which in the eastern Aleutians ecoregion includes only the shelf area north of the islands), there is a larger biomass of pelagic foragers compared to that of apex predators across the AI. At the ecoregion scale, both the western and central Aleutians ecoregions have a larger total ﬁsh biomass of pelagic foragers compared to that of apex predator
	Total pelagic foragers biomass is slightly under 1.8 million tons over the entire Aleutian archipelago, which is very similar to that of 2016, with some species decreasing in the western and central ecoregions and increasing in the eastern ecoregion. There is a consistent long term trend whereby the proportion of rockﬁsh biomass (Paciﬁc Ocean perch, POP, and northern rockﬁsh shown in purple tones in Figure 8) has been consistently increasing compared to that of Atka mackerel and pollock combined. What in th
	11 
	Steller sea lions), and a variety of other ﬁsh. Most pelagic piscivorous predators will complement their diets with squid and myctophids, however for central place foragers, that implies longer trips from their respective colonies and haul outs. 
	12 
	Figure
	 
	Figure 9: From left to right: bottom trawl survey water column temperatures, satellite-derived sea 
	  1997 
	  2000 
	  2002   2006   2012 
	  2004 
	  2010 

	   2014 
	Western Ecoregion In the western ecoregion speciﬁcally, the reproductive success of planktivorous auklets, serving as indicators of zooplankton production, has been above average from 2015 to 2018. Increases from 2017 to 2018 were seen in both crested auklets, which feed their chicks mainly euphausiids and copepods, and least auklets, which focus on copepods. Thus, we can speculate that suﬃcient zooplankton were available to support reproductive success. Positive length-weight residuals of Atka mackerel and
	-
	-
	-

	Central Ecoregion Recent trends in auklet reproductive success in the central ecoregion are unknown due to the disruption of the monitored colony in 2008, when the volcano on Kasatochi Island erupted and the seabird research ﬁeld camp and the monitored colonies were covered with ash. A suitable replacement indicator has not yet been identiﬁed. Forage ﬁsh trends as captured by puﬃns are not available from this ecoregion because puﬃns are not as numerous and nests are not monitored regularly. Both ﬁsh apex pr
	Eastern Ecoregion Planktivorous auklets are not as numerous in the eastern ecoregion as in the central and western ecoregion and are not monitored in the eastern ecoregion. However, surface-foraging storm-petrels have shown consistent reproductive success (while below average for Leach’s storm-petrels, reproductive success was over 60%), indicating, that zooplankton resources were suﬃcient to support reproduction. Relative abundances of gadids and Ammodytes (sand lance) in prey brought back to feed puﬃn chi
	15 
	gadids. Hexagrammids comprise a low proportion of chick diets relative to those in the western ecoregion. Chick-provisioning patterns suggest puﬃns are responding to changes in forage ﬁsh availability, such as providing support for multiple reports of high numbers of age-0 pollock in 2017. All ﬁsh foraging guilds ﬂuctuate largely in this ecoregion which has the lowest total biomass of pelagic foragers. However, all pelagic foragers species biomasses increased this year; apex predators increased overall. Tog
	16 


	Executive Summary of Recent Trends in the Aleutian Islands 
	Executive Summary of Recent Trends in the Aleutian Islands 
	This section contains links to all new and updated information contained in this report. The links are organized within three sections: Physical and Environmental Trends, Ecosystem Trends, and Fishing and Fisheries Trends. 
	Physical and Environmental Trends 
	Physical and Environmental Trends 
	North Paciﬁc 
	‹ 
	The North Paciﬁc atmospheric-ocean climate system during fall 2017 to summer 2018 was similar to that during 2016–2017 (p. 40). 
	‹ 
	The prominent sea surface temperature anomalies during 2017-18 tended to be positive, with persistent warmth in the subtropical eastern North Paciﬁc Ocean (p. 40). 
	‹ A weak La Ni˜na developed during winter 2017–2018 along with a weaker than normal Aleutian Low, similar to the previous year (p. 45). 
	‹ 
	The Paciﬁc Decadal Oscillation (PDO) was slightly positive during the past year, with a decline to near zero in the summer of 2018 reﬂecting the wide-scale warm pattern across the North Paciﬁc Ocean (p. 45). 
	‹ 
	The North Paciﬁc Index (NPI) was strongly positive from fall 2017 into 2018 due to the relatively high sea level pressure in the region of the Aleutian Low, which was displaced to the northwest, over Siberia, and causing persistent warm winds from the southwest over the Bering Sea last winter (p. 41). 
	‹ 
	The North Paciﬁc Gyre Oscillation (NPGO) declined from a small to a large negative value from 2017 to early 2018, implying that ﬂows in the Alaska portion of the Subarctic Gyre weakened and low nitrate levels along Line P extending from Vancouver Island to Station PAPA (p. 45). 
	‹ 
	The climate models used for seasonal weather predictions are indicating about a 70% chance of a weak-moderate El Ni˜no for the winter of 2018-19, and warmer than normal SSTs in both the western and eastern mid-latitude North Paciﬁc in early 2019 (p. 45). 
	Aleutian Islands 
	‹ 
	The Aleutians Islands region experienced suppressed storminess through fall and winter 2017/2018 with predominant winds from the southwest (p. 40). 
	17 
	‹ 
	The Alaska Stream appears to have been relatively diﬀuse on the south side of the eastern Aleutian Islands (p. 40). 
	‹ 
	Eddy energy in the Aleutian Islands region has been low from the fall 2012 through 2018, indicating the likelihood of smaller than average ﬂuxes of volume, heat, salt, and nutrient ﬂuxes through Amukta Pass (p. 49). 
	‹ 
	A new satellite-derived SST indicator presents seasonal anomalies over time in the Aleutian Islands ecoregions. There was a general consistency in temperature anomalies within each year for the central and eastern Aleutian Island areas, whereas the western Aleutian Island region was more likely to diverge from the other areas in the direction of temperature anomaly within a season. The indicator shows that summer and winter temperatures were anomalously warm from 2014–2017, then cooled during summer 2018 (p
	‹ 
	Sea surface temperature values were moderately warm from fall 2017 through spring 2018 but then cooled to normal during summer 2018 (p. 41). 
	‹ 
	The temperature anomaly proﬁles from the biennial AI bottom trawl survey suggests that there was a return to slightly cooler conditions in 2018 relative to 2016, but that 2018 is still amongst the warmer years over the survey time series, with warm anomalies penetrating deeper and distributed more extensively across the Aleutian archipelago than in 2014 (p. 52). 

	Ecosystem Trends 
	Ecosystem Trends 
	‹ 
	The Aleutian islands bottom trawl survey of structural epifauna showed variable distributions. Sponges are caught in most tows in the AI west of the southern Bering Sea. Abundance of coral in all areas has declined since about 1991-1993 surveys and is at generally low levels in all areas, but the frequency of occurrence has remained steady. Soft corals occur in relatively few tows, except in the eastern Aleutian Islands. Sea anemones are common, but sea pen abundance is low (p. 56). 
	‹ 
	In the Bering Sea region north of the Western and Central Aleutian Islands that is sampled by the Continuous Plankton Recorder, spring diatom abundances have remained above average 2013–2017 (p. 60). 
	‹ 
	However, copepod community size anomalies have remained negative from 2014–2017 indicating a community biased towards smaller species than is typical in this ecosystem (p. 60). 
	‹ 
	Jellyﬁsh mean catch per unit eﬀort in the biennial AI bottom trawl survey is typically higher in the western and eastern AI than in the central AI. Catches and frequency of occurrence steadily increased across the AI from 2012 to 2016, but decreased in 2018 (p. 63). 
	‹ 
	Length-weight residuals (a measure of groundﬁsh condition) in 2014 and 2016 were negative for all species except arrowtooth ﬂounder in 2014 and southern rock sole in 2016. In 2018, condition continued to be strongly negative for Paciﬁc cod, northern rockﬁsh, Paciﬁc Ocean perch and arrowtooth ﬂounder (p. 65) 
	‹ 
	The depth distributions of rougheye rockﬁsh, Paciﬁc ocean perch, shortraker rockﬁsh, and northern rockﬁsh have been shallower in the most recent bottom trawl surveys of the Aleutian Islands. The mean spatial distribution of northern rockﬁsh is trending westward. There are no signiﬁcant trends in mean-weighted temperature distributions for any rockﬁsh species (p. 67). 
	‹ 
	Benthic communities and other non-target species sampled incidentally in the biennial bottom trawl survey. There has been a notable decline in eelpout biomass in the western AI in the last 4 surveys. Echinoderms and poachers have been increasing in the eastern AI ecoregion in the last 3 surveys (p. 71). 
	18 
	‹ 
	The overall biomass in the summer bottom trawl survey in 2018 was very similar to that in 2016. The largest diﬀerence was a decrease in arrowtooth ﬂounder, which occured in the central Aleutian Islands ecoregion (p. 8). 
	‹ 
	Paciﬁc cod showed a large decrease in the western Aleutian Islands ecoregion, but the overall pattern was balanced by increases in the eastern and central Aleutian Islands ecoregion (p. 8). 
	‹ 
	The long term trend reﬂects a continuing shift in the pelagic foraging biomass from that dominated by Atka mackerel and pollock to that dominated by rockﬁsh (p. 8) 
	‹ 
	In general, seabirds in the Aleutians did not experience widespread failures like they did in the Gulf of Alaska during the marine heat wave of the past few years. However many piscivorous seabirds did poorly in 2018 at Buldir (western AI) and had mixed success at Aiktak (eastern AI), while planktivorous seabirds have remained generally successful. This pattern suggests that zooplankton availability was suﬃcient to support chick-rearing at both colonies, but that forage ﬁsh prey were insuﬃcient to support c
	‹ 
	The western AI Steller sea lion adult population decreased rapidly at approximately 7% per year and sub-area population trends improved to the east through the western Gulf of Alaska, where the annual trend increased approximately 4% per year. Regional trends in pup production are similar to trends in non-pup counts, with continued relatively steep declines in the western AI, a less steep decline in the central AI, and improvement in the eastern AI (p. 2). 
	‹ 
	A new indicator demonstrates that the stability (inverse biomass coeﬃcient of variation) of groundﬁsh biomass in the Aleutian Islands bottom trawl survey has been relatively constant from 2010–2018. There has been a gradual decrease over this time, but with a non-signiﬁcant linear trend that is inﬂuenced by variability in Atka mackerel biomass (p. 76). 
	‹ 
	A new indicator tracks ﬂuctuations in the size of groundﬁsh sampled over time by the Aleutian Islands bottom trawl survey. The mean length of the groundﬁsh community in 2018 is the highest value over the time series, but in general has remained stable over time (p. 77). 
	‹ 
	A new indicator tracks the mean life span of the groundﬁsh sampled by the Aleutian Islands bottom trawl survey over time. This indicator serves as a proxy for the mean turnover rate of species and communities” and is intended to reﬂect ecosystem stability and resistance to perturbations. The mean lifespan in 2018 is above the long term mean, but has been largely stable over the time period with some interannual variation due to high biomass estimates of pollock or Atka mackerel (p. 79). 

	Fishing and Fisheries Trends 
	Fishing and Fisheries Trends 
	‹ 
	Since 1993 discards and discard rates of groundﬁsh in federally-managed Alaskan groundﬁsh ﬁsheries have generally declined across the trawl pollock, non-pollock trawl, and ﬁxed gear sectors in the Aleutian Islands. To date in 2018, discard levels across all sectors appear to be consistent with levels during the previous 5-year period (p. 81). 
	‹ 
	In 2017, non-target catch of Scyphozoan jellyﬁsh in trawl ﬁsheries in the Aleutian Islands increased substantially from that in 2016. The catch of structural epifauna (sponges, corals, and bryzoans) is variable and was the third highest in 2017. The catch of assorted invertebrates (mainly seastars) has been level from 2015–2017 (p. 84). 
	‹ 
	The incidental catch of seabirds in Aleutian Islands groundﬁsh ﬁsheries in 2017 was the highest estimate in the 2007–2017 time series. This was primarily due to a large increase in the numbers of shearwaters caught (p. 86). 
	‹ 
	With the Arctic FMP closure included, almost 65% of the U.S. EEZ of Alaska is closed to bottom trawling (p. 90). 
	19 
	‹ At present, no Bering Sea/Aleutian Islands groundﬁsh stock or stock complex were subjected to overﬁshing, known to be overﬁshed, or known to be approaching an overﬁshed condition (p. 96). 
	‹ The percent of area disturbed due to commercial ﬁshing interactions (pelagic and non-pelagic trawl, longline, and pot) has decreased slightly or remained steady in the Aleutian Islands (p. 92). 
	‹ Landings (pounds) are used in a new indicator to characterize commercial seafood production. Landings in the Aleutian Islands are primarily composed of pelagic foragers and apex predators. Atka mackerel dominate the pelagic forager catch. Landings of apex predators decreased in 2011 due to a decrease in Paciﬁc cod catches (p. 101). 
	-

	‹ Subsistence salmon harvest in the eastern Aleutian Islands has varied over time, but has been declining in the central Aleutian Islands, with none reported to have been caught in the most recent year, 2016. Subsistence halibut catches have also been generally declining since 2004, but this trend may be related to subsistence survey methodology (p. 103). 
	‹ Economic values of 5 functional groups (apex predators, benthic foragers, motile epifauna, pelagic foragers, and salmonids) are presented in a new indicator. Ex-vessel values have been increasing for pelagic foragers since 2010 primarily due to Atka mackerel and rockﬁsh and decreasing for Paciﬁc cod. First-wholesale value shows similar trends. Contrary to the Gulf of Alaska and Eastern Bering Sea, the ﬁrst-wholesale total catch unit value in the Aleutian Islands has an increasing trend since 2009, with th
	‹ Unemployment rates in Aleutian Islands ﬁshing communities from 1990 to 2017 were lower than state and national rates, reﬂecting stability in the commercial ﬁshing and seafood processing industries (p. 110). 
	‹ As of 2017 the total population including all Aleutian Island communities was 5,755 people. The eastern AI has had the most steady population increase between 1880 and 2015, whereas the central and western AI experienced ﬂuctuations. The western AI has had no residents wince 2011 (p. 114). 
	‹ While Unalaska schools in the eastern Aleutian Islands have maintained relatively stable enrollment since 1996, Nikolski, Akutan, and False Pass have diminished dramatically and are no longer viable. Both Adak and Atka schools in the central Aleutian Islands have experienced declining enrollment (p. 117). 
	20 
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	General Introduction and Background 
	The goals of the Ecosystem Status Reports are to (1) provide stronger links between ecosystem research and ﬁshery management and to (2) spur new understanding of the connections between ecosystem components by bringing together the results of diverse research eﬀorts into one document. Beginning in 2016, we split the report into four separate documents, one for the Gulf of Alaska, Aleutian Islands, eastern Bering Sea, and the Arctic. This year, we present updated reports for the Gulf of Alaska, Aleutian Isla
	1 

	‹ 
	Report Card(s) 
	‹ 
	Ecosystem Assessment 
	‹ 
	Executive Summary 
	‹ 
	Ecosystem Indicators 
	The purpose of the ﬁrst section, the Report Card(s), is to summarize the status of the top indicators selected by teams of ecosystem experts to best represent each ecosystem. Time series of indicators are presented in ﬁgures formatted similarly to enable comparisons across indicators. Recent trends in climate and the physical environment, ecosystems, and ﬁshing and ﬁsheries are highlighted in bulleted lists. The selected list of indicators is intended to be revisited regularly. The eastern Bering Sea indica
	The purpose of the second section, the Ecosystem Assessment, is to synthesize historical climate and ﬁshing eﬀects on Alaskan marine ecosystems using information from the Ecosystem Status and Management Indicators section and stock assessment reports. An ongoing goal is to produce ecosystem assessments utilizing a blend of data analysis and modeling to clearly communicate the current status and possible future directions of ecosystems. In 2017 we expanded the Fishing and Human Dimensions section to more bro
	-

	The purpose of the third section, the Executive Summary, is to provide a concise summary of new or updated information contained in each report. Page links to sections with more detail are provided. 
	The purpose of the fourth section, Ecosystem Indicators, is to provide detailed information and updates on the status and trends of ecosystem components. The indicators are broadly grouped into Ecosystem Status Indicators, organized by trophic level, and Fishing and Human Dimensions Indicators, organized around objective categories derived from U.S. legislation and current management practices. Descriptions of the Report Card indicators and “Noteworthy” items that capture unique occurrences are highlighted 
	The Arctic report is under development 
	1
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	1. 
	1. 
	1. 
	Maintain biodiversity consistent with natural evolutionary and ecological processes, including dynamic change and variability 

	2. 
	2. 
	Maintain and restore habitats essential for ﬁsh and their prey 

	3. 
	3. 
	Maintain system sustainability and sustainable yields for human consumption and non-extractive uses 

	4. 
	4. 
	Maintain the concept that humans are components of the ecosystem 


	History of the ESRs Since 1995, the North Paciﬁc Fishery Management Councils (NPFMC) Ground-ﬁsh Plan Teams have prepared a separate Ecosystem Status (formerly Considerations) Report within the annual SAFE report. Each new Ecosystem Status Report provides updates and new information to supplement the original report. The original 1995 report presented a compendium of general information on the Gulf of Alaska, Bering Sea, and Aleutian Island ecosystems as well as a general discussion of ecosystem-based manage
	-
	-
	-

	In 1999, a proposal came forward to enhance the Ecosystem Status Report by including more information on indicators of ecosystem status and trends and more ecosystem-based management performance measures. The purpose of this enhancement was to accomplish several goals: 
	1. 
	1. 
	1. 
	Track ecosystem-based management eﬀorts and their eﬃcacy 

	2. 
	2. 
	Track changes in the ecosystem that are not easily incorporated into single-species assessments 

	3. 
	3. 
	Bring results from ecosystem research eﬀorts to the attention of stock assessment scientists and ﬁshery managers, 

	4. 
	4. 
	Provide a stronger link between ecosystem research and ﬁshery management 

	5. 
	5. 
	Provide an assessment of the past, present, and future role of climate and humans in inﬂuencing ecosystem status and trends 


	Each year since 1999, the Ecosystem Status Reports have included some new contributions and will continue to evolve as new information becomes available. Evaluation of the meaning of observed changes should be in the context of how each indicator relates to a particular ecosystem component. For example, particular oceanographic conditions, such as bottom temperature increases, might be favorable to some species but not for others. Evaluations should follow an analysis framework such as that provided in the 
	In 2002, stock assessment scientists began using indicators contained in this report to systematically assess ecosystem factors such as climate, predators, prey, and habitat that might aﬀect a particular stock. Information regarding a particular ﬁshery’s catch, bycatch, and temporal/spatial distribution can be used to assess possible impacts of that ﬁshery on the ecosystem. Indicators of concern can be highlighted within each assessment and can be used by the Groundﬁsh Plan Teams and the Council to justify 
	-

	We initiated a regional approach to the ESR in 2010 and presented a new ecosystem assessment for the eastern Bering Sea. In 2011, we followed the same approach and presented a new assessment for the Aleutian Islands 
	30 
	based on a similar format to that of the eastern Bering Sea. In 2012, we provided a preliminary ecosystem assessment on the Arctic. Our intent was to provide an overview of general Arctic ecosystem information that may form the basis for more comprehensive future Arctic ecosystem assessments. In 2015, we presented a new Gulf of Alaska report card and assessment, which was further divided into Western and Eastern Gulf of Alaska report cards beginning in 2016. This was also the year that the previous Alaska-w
	2 

	The eastern Bering Sea and Aleutian Islands ecosystem assessments were based on additional reﬁnements contributed by Ecosystem Synthesis Teams. For these assessments, the teams focused on a subset of broad, community-level indicators to determine the current state and likely future trends of ecosystem productivity in the EBS and ecosystem variability in the Aleutian Islands. The teams also selected indicators that reﬂect trends in non-ﬁshery apex predators and maintaining a sustainable species mix in the ha
	Originally, contributors to the Ecosystem Status Reports were asked to provide a description of their contributed index/information, summarize the historical trends and current status of the index, and identify potential factors causing those trends. Beginning in 2009, contributors were also asked to describe why the index is important to groundﬁsh ﬁshery management and implications of index trends. In particular, contributors were asked to brieﬂy address implications or impacts of the observed trends on th
	-

	This report represents much of the ﬁrst three steps in Alaska’s IEA: deﬁning ecosystem goals, developing indicators, and assessing the ecosystems (Figure 10). The primary stakeholders in this case are the North Paciﬁc Fishery Management Council. Research and development of risk analyses and management strategies is ongoing and will be referenced or included as possible. 
	Figure
	Figure 10: The IEA (integrated ecosystem assessment) process. 
	Figure 10: The IEA (integrated ecosystem assessment) process. 


	The Arctic report is under development 
	2

	31 
	It was requested that contributors to the Ecosystem Status Reports provide actual time series data or make them available electronically. The Ecosystem Status Reports and data for many of the time series presented within are available online at: . These reports and data will also be available through a new NOAA-wide IEA website in early 2019. 
	http://access.afsc.noaa.gov/reem/ecoweb/index.php

	Past reports and all groundﬁsh stock assessments are available at: / stocks/assessments.htm 
	http://www.afsc.noaa.gov/refm

	If you wish to obtain a copy of an Ecosystem Considerations report version prior to 2000, please contact the Council oﬃce (907) 271-2809. 
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	Ecosystem Indicators 
	Report Card Indicator Descriptions 
	The suite of indicators that form the basis for the Aleutian Islands Report Cards was selected to provide a comprehensive view of the Aleutian Island ecosystem reﬂecting across trophic levels from the physical environment to top predators and humans, as well as both the nearshore and oﬀshore. Ideally, they could be regularly updatable across all ecoregions (Western, Central and Eastern), thereby characterizing a global attribute with local conditions. Although a single suite of indicators were chosen for th
	1. 
	1. 
	1. 
	Winter North Paciﬁc Index anomaly relative to the 1961–2000 mean 

	2. 
	2. 
	Reproductive anomalies of planktivorous least auklet and crested auklets as indicators of zooplankton productivity 

	3. 
	3. 
	Proportions of Ammodytes, gadids, and hexagrammids in tufted puﬃn chick diets 

	4. 
	4. 
	Apex predator and pelagic forager ﬁsh biomass indices 

	5. 
	5. 
	Sea otter counts 

	6. 
	6. 
	Steller sea lion non pup counts (juveniles and adults) 

	7. 
	7. 
	Percent of shelf <500m deep trawled 

	8. 
	8. 
	K-12 enrollment in Aleutian Islands schools 


	Winter North Paciﬁc Index The North Paciﬁc Index (Trenberth and Hurrell, 1994), the area weighted mean sea level pressure over the region 30–65N, 160E–140W, is a widely used measure of the intensity of the Aleutian Low. A negative winter (November–March) NPI anomaly implies a strong Aleutian Low and generally stormier conditions. It has been suggested that correlations between a strong Aleutian Low and decreased seabird productivity in the Aleutian Islands may be due to decreased prey (zooplankton) availabi
	o
	o
	o
	o

	Contact: nick.bond@noaa.gov 
	Contact: nick.bond@noaa.gov 

	Reproductive anomalies of planktivorous least auklet and crested auklets Least auklets (Aethia pusilla) and crested auklets (A. cristatella) are small, abundant seabirds that nest in the Aleutian Islands. The USFWS stations ﬁeld biologists to monitor auklet chick diets and reproductive success annually 
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	at Buldir Island and less frequently at other islands on which they occur. Both species are planktivorous and dive to capture their prey. Least auklet chick diets are mainly composed of Neocalanus cristatus, N. plumchrus, and N. ﬂemingeri. Crested auklet chick diets consist of mainly Euphausiacea and N. cristatus. Due to the lack of time series of direct measurements of zooplankton in the Aleutian Islands, the team selected reproductive anomalies of least and crested auklets as indicators of copepod and eup
	-
	-

	Reproductive success is deﬁned as the ratio of number of nest sites with a ﬂedged chick to the number of nest sites with eggs. In the Western ecoregion, reproductive success of least and crested auklets were recorded annually at Buldir Island from 1988-2010 with the exception of 1989 and 1999. In the Central ecoregion, reproductive success was monitored annually at Kasatochi Island from 1996-2007. In 2008 a volcanic eruption covered the monitored colony in ash, disrupting breeding. It is unknown when auklet
	Contact: heather 
	renner@fws.gov 

	Proportions of hexagrammids, gadids, and Ammodytes in tufted puﬃn chick diets 
	Tufted puﬃns (Fratercula cirrhata) are medium-sized diving seabirds that nest in varying densities throughout the Aleutians. The USFWS stations ﬁeld biologists to monitor puﬃn chick diets annually at Buldir and Aiktak Islands (Figure 6) and less frequently at other Aleutian islands on which they occur. Puﬃns carry multiple prey items in their bills when they return to their colonies to feed their chicks. Forage ﬁsh and squid comprise most of puﬃn chick diets. In the absence of direct measures of forage ﬁsh 
	-

	Contact: heather 
	renner@fws.gov 

	Apex predator and pelagic forager ﬁsh biomass indices We present two foraging guilds to indicate the status and trends for ﬁsh in the Aleutian Islands: apex predators and pelagic foragers. Each is described in detail below. This guild analysis was based on the time series available as part of the NOAA summer bottom trawl survey for the Aleutian Islands (Western and Central ecoregions) and the Aleutian Islands and Gulf of Alaska combined (Eastern ecoregion). These two guilds are based on the aggregation of A
	Time series for the Western and Central ecoregions are based on data collected from the AI bottom trawl survey. The Eastern ecoregion time series is a composite of the Aleutian Islands survey, which samples the northern portion of the islands, and the Gulf of Alaska survey, which samples the southern portion. Since surveys in these two areas are conducted in diﬀerent years, the biomass estimates represent the closest pair of years pooled together to get a total biomass estimate for the shelf region (0–500m)
	Contact: ivonne.ortiz@noaa.gov 
	Contact: ivonne.ortiz@noaa.gov 
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	Table 1: Species included in foraging guild-based ﬁsh biomass indices for the Aleutian Islands 
	Fish Apex Predators 
	Fish Apex Predators 
	Fish Apex Predators 
	Pelagic Fish Foragers 

	Pacﬁc cod 
	Pacﬁc cod 
	Atka mackerel 

	Paciﬁc halibut 
	Paciﬁc halibut 
	Northern Rockﬁsh 

	Arrowtooth ﬂounder 
	Arrowtooth ﬂounder 
	Paciﬁc ocean perch 

	Kamchatka ﬂounder 
	Kamchatka ﬂounder 
	Walleye pollock 

	Rougheye rockﬁsh 
	Rougheye rockﬁsh 

	Blackspotted rockﬁsh 
	Blackspotted rockﬁsh 

	Large sculpins 
	Large sculpins 

	Skates 
	Skates 


	Sea otter counts Sea otters (Enhydra lutris) counts were selected as a representative of the nearshore Aleutian environment. The >300 islands which make up the Aleutian chain provide extensive nearshore habitat. Sea otters are an integral component of the coastal ecosystems in which they occur. Sea otter predation limits the distribution and abundance of their benthic invertebrate prey, in particular herbivorous sea urchins. Otter-induced urchin declines increase the distribution and abundance of kelp in Al
	-

	Sea otter survey methods are detailed in Doroﬀ et al. Doroﬀ et al. (2003). Skiﬀ-based surveys of sea otters were conducted intermittently at Amchitka Island, Kiska and Little Kiska Islands, Attu Island, Agattu Island, Rat Island and the Semichi Islands when viewing conditions were good to excellent (Beaufort sea state of 1-2, and .1 km of clear visibility at sea level). Two or more observers counted sea otters from a 5.2m skiﬀ as it was run parallel to shore along the outer margins of kelp (Alaria ﬁstulosa)
	Contributed by Tim Tinker, formerly of USGS 
	Steller sea lion non pup counts Counts of adult and juvenile Steller sea lions (Eumetopias jubatus) are used in the Aleutian Island ecosystem assessment to represent the status of an apex piscivorous predator whose diet consists primarily of commercially-ﬁshed species. The Steller sea lion inhabits coastal regions of the North Paciﬁc Ocean, breeding in summer on terrestrial rookeries located from California north throughout the Gulf of Alaska, the eastern Bering Sea, the Aleutian Islands, Kamchatka Peninsul
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	2005). Steller sea lions are generalist predators and consume a wide variety of ﬁsh and cephalopods in habitats ranging from nearshore demersal to oﬀshore epi-pelagic, with local diets reﬂecting the species composition of the local ﬁsh community (Pitcher and Fay, 1982; Riemer and Brown, 1997; Sinclair and Zeppelin, 2002; Waite and Burkanov, 2006; Trites et al., 2007; McKenzie and Wynne, 2008; Fritz and Hinckley, 2005). In the Aleutian Islands, the diet consists largely of Atka mackerel, followed by salmon, 
	Status and trends of Steller sea lion populations in Alaska are assessed using aerial photographic surveys of a series of “trend” terrestrial haul-outs and rookeries that have been consistently surveyed each summer breeding season, when the proportion of animals hauled out is the highest during the year (Sease and York, 2003). Since 2004, NMFS has used high-resolution vertical photography (computer-controlled camera mounted in the belly of the plane) in its sea lion surveys in Alaska. This replaced the obli
	In our Aleutian Island ecosystem assessment, counts of adult and juvenile Steller sea lions at trend sites are used to indicate of the “health” of apex piscivores whose diet consists primarily of commercially-ﬁshed species. The survey sites used in the assessment are: 
	‹ 
	Western (172-177E; 10 sites in the Near Island group and Buldir west of Kiska), 
	o

	‹ 
	Central (177E to ∼170W; 62 sites in the Rat, Delarof, and Andreanof Island groups, plus the Islands of Four Mountains), and 
	o
	o

	‹ 
	Eastern ecoregions (163-170W; 30 sites in the Fox and Krenitzen Islands, on Unimak Island, and on and near Amak Island in the southeastern Bering Sea) 
	o

	Contact: kathryn.sweeney@noaa.gov 
	Contact: kathryn.sweeney@noaa.gov 

	Habitat disturbance from trawls This new indicator uses output from the Fishing Eﬀects (FE) model to estimate the habitat reduction of geological and biological features over the Bering Sea domain, utilizing spatially-explicit VMS data. The eﬀects are cumulative, incorporating both estimated recovery time and disturbance. The time series for this indicator is available since 2003, when widespread VMS data became available. The monthly value in September is used as an annual indicator. 
	Contact: john.v.olson@noaa.gov 
	Contact: john.v.olson@noaa.gov 

	K-12 enrollment in Aleutian Islands schools The number of children enrolled in schools was selected as an indicator of vibrant, sustainable communities in the Aleutian Islands ecosystem. Community residents are closely tied to the ecosystem through sense of place and daily experience and activity. Enrollment statistics for kindergarten through twelfth (K–12) grades by school and region were compiled for the years 1996 through 2014 (/). School enrollment numbers ﬂuctuate widely and serve to highlight the diﬃ
	-
	http://www.eed.state.ak.us/stats
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	Contact: 
	sarah.wise@noaa.gov 

	Noteworthy (formerly Hot Topics) 
	This section replaces the previously-named Hot Topics. We include information here that is deemed of relevance to ecosystem considerations of ﬁsheries managers, but does not ﬁt our typical indicator format. Information included here is often new, a one-time event, qualitative, or some other type of non-standard ecosystem indicator. 
	Federal ﬁshery changes in the Aleutian Islands 
	Earlier in April of 2018, the NPFMC created a Purpose and Need statement to modify Amendment 113 to the BSAI FMP, which under certain conditions sets aside 5,000 mt exclusively for harvest by vessels participating in directed ﬁshing for AI Paciﬁc cod and delivering their catch for processing to AI shoreplants west of 170W from January 1 through March 15 (mainly Adak). At issue was the February 28 deadline by which 1,000 mt had to be ﬁshed in order to lock the 5,000 mt set aside. Vessels caught a portion and
	o

	Following numerous ownership changes since 1999, the Adak shoreplant reopened in 2017 and continued to ship live golden King crab to Shanghai in 2018 . 
	Contributed by Ivonne Ortiz 
	Local Environmental (LEO) Network 
	The NMFS AFSC is interested in documenting and learning from citizen science observations that may be incorporated into Ecosystem Status Reports (ESRs). We identiﬁed the LEO Network as a potential platform for tracking these observations in the 2017 ESR and were encouraged by the Council and SSC to continue exploring the utilization of this framework in future reports. Other citizen science eﬀorts exist in Alaska, but to our knowledge these eﬀorts are mostly project speciﬁc (e.g., bird spotting and identiﬁc
	The LEO Network was launched in 2012 by the Alaska Native Tribal Health Consortium (ANTHC) as a tool for local observers in the Arctic to share information about climate and other drivers of environmental observations, and the network now spans the globe. Consultants with relevant expertise often, but not always, review the observations and provide feedback. The observations are of unusual environmental events or notable environmental changes, reported by geographic location and date, and classiﬁed by relev
	change (see: https://www.leonetwork.org/en/docs/about/about). Anyone may join the network and provide 

	Figure 11 shows LEO Network observations from January 1, 2017 to August 1, 2018 in the Aleutian Islands (AI) LME with the frequency by category. These categories are based on analysis of the 7 total observations in 2017 and 2018 (through August 1) in the AI and are not limited to the marine environment. The observations in Figure 12 were made in one community. 
	st

	In response to the Council’s and SSC’s previous comments on the use of LEO Network observations in this report, AFSC is currently developing a LEO Network project to solicit observations from community 
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	Figure
	Figure 11: LEO Network Observations in Alaska for 2017 and 2018 (through August 1), source: 
	Figure 11: LEO Network Observations in Alaska for 2017 and 2018 (through August 1), source: 
	st



	. 
	https://www.leonetwork.org

	members on speciﬁc ecological questions. Alaska State agencies, non-proﬁt organizations, universities, and 
	U.S. federal agencies have similarly developed projects on the network to track observations speciﬁc to their area of interest, e.g., weather events, ﬁsh pathology, subsistence harvests, etc. AFSC is also actively pursuing opportunities to examine ways of incorporating local and traditional knowledge into ﬁsheries management in the North Paciﬁc with the Councils Bering Sea Fishery Ecosystem Plan and Social Science Planning Team and through targeted research eﬀorts. 
	Contributed by Marysia Szymkowiak 
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	Figure
	Figure 12: Distribution of 2017 and 2018 (through August 1) LEO Network Observations in one AI community. 
	Figure 12: Distribution of 2017 and 2018 (through August 1) LEO Network Observations in one AI community. 
	st
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	Ecosystem Status Indicators 
	Indicators presented in this section are intended to provide detailed information and updates on the status and trends of ecosystem components. Older contributions that have not been updated are excluded from this edition of the report. Please see archived versions available at: / ecoweb/index.php 
	http://access.afsc.noaa.gov/reem

	Physical Environment 
	North Paciﬁc Climate Overview 
	Contributed by Nick Bond (UW/JISAO) NOAA/PMEL, Building 3, 7600 Sand Point Way NE, Seattle, WA 98115-6349 
	Contact: nicholas.bond@noaa.gov 

	Last updated: August 2018 
	Summary: The state of the North Paciﬁc atmosphere-ocean system during 2017-2018 was rather similar to that during 2016-17. Both winters featured La Ni˜na and weaker than normal Aleutian lows (positive sea level pressure, SLP anomalies). The more prominent sea surface temperature (SST) anomalies during 2017-18 tended to be in the positive sense, with persistent warmth in the subtropical eastern North Paciﬁc, increasing positive anomalies in the Bering Sea, and the expansion of warm waters oﬀ the east coast o
	Regional Highlights: 
	Arctic. The winter of 2017/18 was relatively warm in the Arctic, and included an extreme “heat wave” (for the season) in the central Arctic during February. The Arctic’s maximum ice extent in mid-March 2018 was the 2lowest on record. On the other hand, the decline in sea ice coverage during the late spring and early summer of 2018 was on the slow side, primarily in association with relatively low SLP in the central Arctic and cool and cloudy weather. The west winds accompanying this circulation pattern help
	nd 

	Bering Sea. The Bering Sea had the least amount of sea ice in the observational record back to 1979. This can be attributed to the delayed start of winter (Being Strait was still open on 1 January) and then very mild temperatures with strong winds from the southwest, particularly in February 2018. An important consequence was a cold pool in summer 2018 of exceedingly small areal extent. The weather during summer 2018 was stormier than usual on the southeast Bering Sea shelf; at the time of this writing it i
	Alaska Peninsula and Aleutian Islands. The weather of this region included suppressed storminess during the fall of 2017 and the following winter of 2017/18. The regional wind anomalies were from the southwest in an overall sense. Based on synthetic data from NOAA’s Global Ocean Data Assimilation System (GODAS), 
	40 
	the Alaska Stream appears to have been relatively diﬀuse, as opposed to concentrated into a narrower, high velocity ﬂow, on the south side of the eastern Aleutian Islands. The eddy activity in this region was on the low side (p. 49). 
	Gulf of Alaska. The weather of the coastal GOA featured warmer than normal air temperatures from late fall 2017 into winter and then again in the following summer of 2018. There was generally less precipitation than usual in the coastal watersheds of the eastern GOA from winter into summer 2018. The freshwater runoﬀ in this region appears to have been enhanced during the winter of 2017/18 and suppressed during the spring of 2018. The GOA coastal winds anomalies were in a clockwise sense during the winter of
	West Coast of Lower 48. This region experienced generally warmer than normal ocean temperatures from late 2017 into 2018 followed by cooling in the north relative to seasonal norms, and continued warmth south of Pt. Conception. The winter of 2017/18 was wetter and slightly cooler than normal in the Paciﬁc Northwest, and relatively warm and dry in California. The abundant snowpack in the Paciﬁc Northwest melted rapidly in May in association with unusually warm weather. The coastal wind anomalies were upwelli
	o

	Sea Surface Temperature and Sea Level Pressure Anomalies 
	Contributed by Nick Bond (UW/JISAO) NOAA/PMEL, Building 3, 7600 Sand Point Way NE, Seattle, WA 98115-6349 
	Contact: nicholas.bond@noaa.gov 

	Last updated: September 2018 
	Description of indices: The state of the North Paciﬁc climate from autumn 2017 through summer 2018 is summarized in terms of seasonal mean sea surface temperature (SST) and sea level pressure (SLP) anomaly maps. The SST and SLP anomalies are relative to mean conditions over the period of 1981–2010. The SST data are from NOAA’s Optimum Interpolation Sea Surface Temperature (OISST) analysis; the SLP data are from the NCEP/NCAR Reanalysis project. Both data sets are made available by NOAA’s Earth System Resear
	-
	http://www.esrl.noaa.gov/psd/cgi-bin/data/composites/printpage

	Status and trends: The eastern portion of the North Paciﬁc ocean experienced during 2014–16 one of the most extreme marine heat waves in the observational record (Scannell et al., 2016); the interval summarized here can be considered a transition period between that event and a more climatologically normal SST distribution on the basin-scale. More detail on the evolution of the SST and SLP from a seasonal perspective is provided directly below. 
	The SST during the autumn (Sep–Nov) of 2017 (Figure 13a) was warmer than normal across almost the entire North Paciﬁc Ocean. Greater positive (> 1C) anomalies occurred in the Chukchi Sea and northwest Bering Sea in the northern and eastern Bering Sea, resulting in a delayed onset of sea ice the following winter. The SST anomalies were negative in the eastern equatorial Paciﬁc in association with the development of La 
	o
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	Ni˜na. The SLP pattern during autumn 2017 featured prominent positive anomalies over the north central portion of the North Paciﬁc Ocean, with the greatest departures from normal over the open ocean south of the western tip of the Alaska Peninsula (Figure 14a). This SLP distribution implies an enhanced storm track along the east coast of Asia, and suppressed storminess from the Aleutians into the Gulf of Alaska (GOA). 
	The North Paciﬁc atmosphere-ocean system during winter (Dec–Feb) of 2017-18 reﬂected to large extent a continuation of the previous fall season. The distribution of SST anomalies (Figure 13b) was quite similar, with some additional warming in the subtropical northeastern Paciﬁc extending southwestward from southern California. The equatorial Paciﬁc was characterized by weak/moderate La Ni˜na conditions with the strongest negative SST anomalies well east of the dateline. The SLP during this period (Figure 14
	o
	o
	-1

	The distribution of anomalous SST in the North Paciﬁc during spring (Mar–May) of 2018 (Figure 13c) was similar to that during the previous winter season. Exceptions were warming relative to seasonal normal in the eastern Bering Sea and in an east-west band from 25to 40N from Japan to the dateline. The SST anomalies in the tropical Paciﬁc were of minor amplitude with the ending of La Ni˜na. The SLP anomaly pattern (Figure 14c) for spring 2018 featured bands of lower than normal pressure from eastern Siberia 
	o 
	o

	The SST anomaly pattern in the North Paciﬁc during summer (Jun–Aug) 2018 is shown in Figure 13d. Positive anomalies continued in a broad band extending from Japan to the southeastern GOA and from the northern Bering Sea into the Chukchi Sea. In the latter area, particularly strong positive temperature anomalies (exceeding 2C) developed in the vicinity of Bering Strait. Near normal SSTs were present along most of the west coast of North America from Vancouver Island to southern California. Warmth continued i
	o
	o
	o
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	Figure
	(a) Autumn (b) Winter 
	Figure
	(c) Spring (d) Summer Figure 13: SST anomalies for autumn (September–November 2017), winter (December 2017–February 2018), spring (March–May 2018), and summer (June–August 2018). 
	43 
	Figure
	(a) Autumn (b) Winter 
	Figure
	(c) Spring (d) Summer Figure 14: SLP anomalies for autumn (September–November 2017), winter (December 2017–February 2018), spring (March–May 2018), and summer (June–August 2018). 
	44 
	Climate Indices 
	Contributed by Nick Bond (UW/JISAO) NOAA/PMEL, Building 3, 7600 Sand Point Way NE, Seattle, WA 98115-6349 
	Contact: nicholas.bond@noaa.gov 

	Last updated: September 2018 
	Description of indices: Climate indices provide an alternative means of characterizing the state of the North Paciﬁc atmosphere-ocean system. The focus here is on ﬁve commonly used indices: the NINO3.4 index for the state of the El Ni˜no/Southern Oscillation (ENSO) phenomenon, Paciﬁc Decadal Oscillation (PDO) index (the leading mode of North Paciﬁc SST variability), North Paciﬁc Index (NPI), North Paciﬁc Gyre Oscillation (NPGO), and Arctic Oscillation (AO). The time series of these indices from 2008 into sp
	Status and trends: The North Paciﬁc atmosphere-ocean climate system was mostly on the warm side during 2017–18. This was despite the second fall/winter in a row with a negative value for the NINO3.4 index in association with a weak/moderate La Ni˜na event. The positive state of the PDO (indicating warmer than normal SST along the west coast of North America and cooler than normal in the central and western North Paciﬁc) that began in early 2014 ended in 2017. This decline is consistent with the typical remo
	The NPGO became strongly negative in 2017, and stayed negative into 2018 (February is the latest month for which this index is available). This index has undergone an overall decline from positive values during the period of 2008 to 2012. The AO represents a measure of the strength of the polar vortex, with positive values signifying anomalously low pressure over the Arctic and high pressure over the Paciﬁc and Atlantic Ocean at a latitude of roughly 45N. It was in a near-neutral state during the last half 
	o

	Seasonal Projections from the National Multi-Model Ensemble (NMME) 
	Contributed by Nick Bond (UW/JISAO) NOAA/PMEL, Building 3, 7600 Sand Point Way NE, Seattle, WA 98115-6349 
	Contact: nicholas.bond@noaa.gov 

	Last updated: September 2018 
	Description of indicator: Seasonal projections of SST from the National Multi-Model Ensemble (NMME) are shown in Figures 16. An ensemble approach incorporating diﬀerent models is particularly appropriate for seasonal and longer-term simulations; the NMME represents the average of eight climate models. The uncertainties and errors in the predictions from any single climate model can be substantial. More detail on the NMME, and projections of other variables, are available at the following website: . ncep.noa
	http://www.cpc

	Status and trends: First, the projections from a year ago are reviewed qualitatively. From an overall perspective, the SST forecasts were essentially correct with respect to their basin-scale patterns of negative and positive SST anomalies. The NMME forecasts included an under-prediction of the magnitudes of some of the more prominent anomalies. In particular, Alaskan waters generally ended up warmer than forecast, 
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	Figure
	Figure 15: Time series of the NINO3.4 (blue), PDO (red), NPI (green), NPGO (purple), and AO (turquoise) indices for 2008–2018. Each time series represents monthly values that are normalized using a climatology based on the years of 1981–2010, and then smoothed with the application of three-month running means. The distance between the horizontal grid lines represents 2 standard deviations. More information on these indices is available from NOAA’s Earth Systems Laboratory at . noaa.gov/psd/data/climateindic
	http://www.esrl

	especially the Bering Sea shelf during late winter and early spring 2018 where there was much less sea ice than suggested by the model forecasts made during September 2017. 
	These NMME forecasts of three-month average SST anomalies indicate a continuation of warm conditions across virtually all of the North Paciﬁc through the end of the year (Oct–Dec 2018) with a reduction in the longitudinal extent of cooler than normal temperatures oﬀshore of the Paciﬁc Northwest (Figure 16a). The magnitude of the positive anomalies is projected to be greatest (exceeding 1C) north of the Kuroshio Extension in the western North Paciﬁc and in the northern portion of the Bering Sea. Positive SST
	o
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	El Ni˜no, and otherwise equatorial SSTs in the neutral category. The overall pattern of SST anomalies across the North Paciﬁc is maintained through the 3-month periods of December 2018–February 2019 (Figure 16b) and February–April 2019 (Figure 16c). There is moderate but by no means a complete consensus among the models that the Aleutian low will be deeper than normal (negative SLP anomalies) during the latter portion of the winter of 2018–2019. This is a common remote response to El Ni˜no, and tends to res
	Implications: The PDO has also generally been positive during these kinds of periods in the past, but the predicted warmth in both the western and eastern portions of the mid-latitude North Paciﬁc does not resemble the characteristic pattern of the PDO. An important implication is that the PDO is liable to be ill-suited for characterizing the state of the North Paciﬁc in early 2019. 
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	Figure
	(a) Months OND 
	Figure
	(b) 
	(b) 
	(b) 
	Months DJF 

	(c) 
	(c) 
	Months FMA 


	Figure
	Figure
	Figure 16: Predicted SST anomalies from the NMME model for OND (1 month lead), DJF (3 month lead), and JFM (4 month lead) for the 2017–2018 season. 
	Figure 16: Predicted SST anomalies from the NMME model for OND (1 month lead), DJF (3 month lead), and JFM (4 month lead) for the 2017–2018 season. 
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	Eddies in the Aleutian Islands 
	Contributed by Carol Ladd, NOAA/PMEL Building 3, 7600 Sand Point Way NE, Seattle, WA 98115-6349 
	Contact: carol.ladd@noaa.gov 

	Last updated: August 2018 
	Description of indicator: Eddies in the Alaskan Stream south of the Aleutian Islands have been shown to inﬂuence ﬂow into the Bering Sea through the Aleutian Passes (Okkonen, 1996). By inﬂuencing ﬂow through the passes, eddies could impact ﬂow in the Aleutian North Slope Current and Bering Slope Current as well as inﬂuencing the transports of heat, salt and nutrients (Mordy et al., 2005; Stabeno et al., 2005) into the Bering Sea. 
	Since 1992, a suite of satellite altimeters has been monitoring sea surface height. Eddy kinetic energy (EKE) can be calculated from gridded altimetry data (Ducet et al., 2000). The Ssalto/Duacs altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS) (). 
	http://www.marine.copernicus.eu

	Figure
	Figure 17: Eddy Kinetic Energy averaged over January 1993–December 2017 calculated from satellite altimetry. Square denotes region over which EKE was averaged for Figure 18. 
	Figure 17: Eddy Kinetic Energy averaged over January 1993–December 2017 calculated from satellite altimetry. Square denotes region over which EKE was averaged for Figure 18. 
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	Figure
	Figure 18: Eddy kinetic energy (cms) averaged over region shown in Figure 17. Black (line with highest variability): monthly EKE (dashed part of line is from near-real-time altimetry product which is less accurate than the delayed altimetry product). Red: seasonal cycle. Green (straight line): mean over entire time series. 
	Figure 18: Eddy kinetic energy (cms) averaged over region shown in Figure 17. Black (line with highest variability): monthly EKE (dashed part of line is from near-real-time altimetry product which is less accurate than the delayed altimetry product). Red: seasonal cycle. Green (straight line): mean over entire time series. 
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	Status and trends: Eddy kinetic energy (EKE) calculated from gridded altimetry data is particularly high in the Alaskan Stream from Unimak Pass to Amukta Pass (Figure 17) indicating the occurrence of frequent, strong eddies in the region. The average EKE in the region 171W-169W, 51.5-52.5N (Figure 
	o
	o
	o
	o

	18) provides an index of eddy energy likely to inﬂuence the ﬂow through Amukta Pass. Particularly strong eddies were observed south of Amukta Pass in 1997, 1999, 2004, 2006/2007, 2009/2010, and summer 2012. Eddy energy in the region has been low from the fall 2012 through 2018. 
	Factors causing trends: The causes of variability in EKE are currently unclear and a subject of ongoing research. 
	Implications: Numerical models have suggested that eddies passing near Amukta Pass may result in increased ﬂow from the Paciﬁc to the Bering Sea (Maslowski et al., 2008). These trends indicate that higher than average volume, heat, salt, and nutrient ﬂuxes to the Bering Sea through Amukta Pass may have occurred in 1997/1998, 1999, 2004, 2006/2007, 2009/2010, and summer 2012. These ﬂuxes likely have been smaller since fall 2012. 
	Satellite-derived Sea Surface Temperature Anomalies in the Aleutian Islands 
	Contributed by Jordan Watson, Auke Bay Laboratories, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
	Contact: jordan.watson@noaa.gov 

	Last updated: August 2018 
	Description of indicator: Sea surface temperature (SST) is often used to explore relationships between commercial ﬁsheries and environmental dynamics. During interpretation of ﬁshery and ecological data, the question often arises, “Was it a cold year or a warm year?” Using satellite data, this ecosystem indicator provides a transparent and simple method by which to evaluate sea surface temperature anomalies across spatial scales that are not limited to the location of a single buoy or data collected during 
	A common limitation of SST records derived from satellites has been missing data as a result of cloud cover. Using the NASA multi-scale ultra-high resolution (MUR) SST dataset however, a combination of collection modalities creates a gap-free blend of data (). Data are available at the daily level for the North Paciﬁc from mid-2002 to present and can be downloaded from the NOAA Coast Watch West Coast Node ERDDAP server (/) 
	https://mur.jpl.nasa.gov/InformationText.php
	https://coastwatch.pfeg.noaa.gov/erddap
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	where they are searchable as “Multi-scale ultra-high resolution (MUR) SST Analysis fv04.1, Global, 0.01, 2002–present, daily”. More than 24 billion individual daily temperature records were downloaded (October 1, 2002–September 30, 2018) and the data were averaged daily by Alaska Department of Fish and Game (ADF&G) groundﬁsh statistical areas (also called stat6 areas; = fishingCommercialByFishery.statmaps), yielding about 10 million temperature records (a daily record for each of the 1,736 statistical areas
	o 
	www.adfg.alaska.gov/index.cfm?adfg

	As an ecosystem indicator for the Aleutian Islands, daily temperatures were averaged by month for the Aleutian Islands (AI) ecosystem regions (from ADF&G statistical areas in the western AI [WAI], west of 177W, central AI [CAI], 170 –177W, and east AI (EAI), 163W–170W[https://alaskafisheries. noaa.gov/maps]) and anomalies were calculated (Figure 19). Monthly anomalies were aggregated by winter (October–March) and summer (April–September). In Figure 19, winter 2002 refers to October–December 2002 and January
	o
	o
	o
	o
	o

	Figure
	Figure 19: Seasonal sea surface temperature anomalies for the Aleutian Islands where WAI, CAI, and EAI are the western, central, and eastern Aleutian Islands, respectively. Data were unavailable for summer 2002 and winter 2018, so these portions of their respective ﬁgures are omitted. 
	Figure 19: Seasonal sea surface temperature anomalies for the Aleutian Islands where WAI, CAI, and EAI are the western, central, and eastern Aleutian Islands, respectively. Data were unavailable for summer 2002 and winter 2018, so these portions of their respective ﬁgures are omitted. 
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	Status and trends: There was a general consistency in temperature anomalies within each year for the central and eastern Aleutian Island areas, whereas the western Aleutian Island region was more likely to diverge from the other areas in the direction of temperature anomaly within a season (Figure 19). The ﬁrst few years of the time series were mixed in terms of warm versus cold, before turning consistently cold during the winter of 2006. Summer and winter temperatures were anomalously warm starting in the 
	Factors inﬂuencing observed trends: It may be important to note that the Aleutian Island ecosystem regions include waters both north and south of the Aleutian chain. Thus, temperature anomalies will be driven by the combined dynamics of both Bering Sea and Gulf of Alaska waters. The trends in warming during recent years are consistent with the remarkably warm periods throughout both the Bering Sea and Gulf of Alaska (Bond et al., 2015; Hu et al., 2017). 
	Implications: A large body of research has explored the eﬀects of stanzas of warm water observed in the Bering Sea over the last two decades, and recent work in particular has attempted to understand what impacts the most recent warming may have on ﬁshery ecosystems (e.g., Stabeno et al., 2017). While most of this work has focused on the eastern Bering Sea in particular, similar patterns of impacts on prey quality and recruitment of juvenile ﬁsh may occur in the Aleutian Islands. 
	The ecosystem indicator presented here provides an example of ways that satellite data can be explored at aggregated spatial and temporal scales. The temperature data set can be utilized across a range of ﬁne (daily temperatures by state statistical area) to coarse (e.g., monthly temperatures by Aleutian Island ecosystem region) scales depending on the questions being asked by researchers or policy makers. For researchers that study ﬁshery eﬀects directly, the daily SST data described here are being linked 
	Aleutian Islands Trawl Survey Water Temperature Analysis 
	Contributed by Ned Laman, Groundﬁsh Assessment Program, Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
	-
	Contact: ned.laman@noaa.gov 

	Last updated: October 2018 
	Description of indicator: Since 1994, water temperature data have routinely been collected during the Aleutian Islands Bottom Trawl Survey conducted by the Alaska Fisheries Science Center Resource Assessment and Conservation Engineering Division Groundﬁsh Assessment Program (Von Szalay et al., 2017). There were three triennial AI bottom trawl surveys between 1994 and 2000; since 2000 the surveys have been conducted biennially (except in 2008 when there was no AI bottom trawl survey). 
	-

	Microbathythermographs (MBTs) attached to the headrope of the net measure and record water temperature and depth during each trawl haul. In 2004, the SeaBird (SBE-39) MBT (Sea-Bird Electronics, Inc., Bellevue, WA) that is in use today replaced the Brancker XL200 data logger (Richard Brancker Research, Ltd., Kanata, Ontario, Canada) which had been in use since 1993. The analyses presented here utilize bathythermic data collected on AI bottom trawl surveys since 1994. 
	The bottom trawl survey has historically begun in late spring (late May to early June) and proceeds west from around Unimak Pass to Stalemate Bank over the course of the summer sampling in the Bering Sea and Paciﬁc Ocean north and south of the archipelago (Von Szalay et al., 2017). In 2002 and 2006, our typical sampling progression was partially reversed with the later season survey sweeping from west to east. We anticipate that water temperatures will increase with advancing collection date and increasing 
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	To account for the inﬂuence of changing day length on water temperatures over the course of the summer and to make inter-annual comparisons more meaningful, an attempt was made to remove the eﬀect of collection date on water temperature by standardizing all bottom trawl collection dates to a median survey date. This was achieved using generalized additive modeling (GAM) to estimate the eﬀects of collection date on temperature at depth across survey areas and years. The resulting model was used to predict te
	1
	o
	o
	o
	o
	o
	o

	Status and trends: The warmest anomalies across the AI typically occurred near the surface (< 50 m) and their depth of penetration beyond the surface varied between years (Figure 20). During the warmest years in the record (2014 and 2016), the warmer anomalies penetrated to 100 m or deeper. There were also some temporally persistent and spatially consistent features in these anomaly plots. Warm, near-surface temperature anomalies were commonly found around the Island of Four Mountains, between Seguam Pass (
	0
	0
	0
	0 

	Factors inﬂuencing observed trends: These observations, and the thermal anomalies modeled from them, represent a brief spatial and temporal snapshot of water temperatures collected during bottom trawl surveys in the AI. Each temperature bin represents data collected over a relatively short time as the vessels moved through an area. Thus, it is diﬃcult to draw general conclusions since short term events such as storms, tidal exchange, or freshwater runoﬀ greatly aﬀect local water temperatures. 
	More recent and larger scale phenomena may have longer-lasting implications on water temperatures in the region. The thermal signal caused by the “Ridiculously Resilient Ridge” of atmospheric high pressure that helped to establish the persistent warm water “Blob” in the Northeast Paciﬁc during 2014 and 2015 (Bond et al., 2015; Di Lorenzo and Mantua, 2016), and which likely intensiﬁed the El Ni˜no Southern Oscillation (ENSO) event of 2015–2016 (Levine and McPhaden, 2016), probably inﬂuenced the temperatures 
	http://www.ospo.noaa.gov/Products/ocean

	Implications: The strength and persistence of various oceanographic features in the AI are anticipated to inﬂuence ecological processes there. The depth and horizontal dispersion of the mixed layer aﬀect primary production in this region (Mordy et al., 2005). Water temperatures inﬂuence ontogenesis of Atka mackerel eggs and larvae (Lauth et al., 2007) and have been shown to impact pollock abundance in the eastern Bering Sea (Stevenson and Lauth, 2012). Work on habitat-based delineation of essential ﬁsh habi
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	play a major role in the transport of both heat and nutrients into the Bering Sea through the Aleutian passes (Maslowski et al., 2008). Phenomena such as these must inﬂuence both AI and Bering Sea ecosystems and ﬁsh populations. By considering inter-annual diﬀerences in water temperatures and their implications, we can better utilize our survey data to understand the state of ﬁsh populations in the AI. 
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	Figure
	Figure 20: Median-survey-date-standardized, generalized additive model (GAM) predicted thermal (C) anomaly proﬁles from water temperature measurements collected on Aleutian Islands bottom trawl surveys (1994–2018); to visually enhance near-surface temperature changes, values ≤3.5C or ≥7.5C were ﬁxed at 3.5 or 7.5C and the y-axis (depth) was truncated at 400 m though maximum collection depth was ca. 500 m. 
	Figure 20: Median-survey-date-standardized, generalized additive model (GAM) predicted thermal (C) anomaly proﬁles from water temperature measurements collected on Aleutian Islands bottom trawl surveys (1994–2018); to visually enhance near-surface temperature changes, values ≤3.5C or ≥7.5C were ﬁxed at 3.5 or 7.5C and the y-axis (depth) was truncated at 400 m though maximum collection depth was ca. 500 m. 
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	Habitat 
	Structural Epifauna in the Aleutian Islands 
	Contributed by Wayne Palsson and Chris Rooper, Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
	-
	Contact: wayne.palsson@noaa.gov 

	Last updated: October 2018 
	Description of indicator: Groups considered to be structural epifauna, formerly known as Habitat Areas of Particular Concern (HAPC) biota, include seapens/seawhips, corals, anemones, and sponges. The biennial survey in the Aleutian Islands (AI) does not sample the density of HAPC fauna well, but does seem to capture spatial trends in presence or absence (Rooper et al., 2016, 2018). However, survey eﬀort in rough or rocky areas where these groups are likely to be more abundant and survey eﬀort is quite limit
	U.S. vessels in subsequent surveys and likely resulted in diﬀerent catch rates for many of these groups. For each species group, the largest catch over the time series was arbitrarily scaled to a value of 100 and all other values were similarly scaled. The standard error (±1) was weighted proportionally to the CPUE to get a relative standard error. Note that CPUE is presented in four areas that diﬀer from the ecoregions that are used elsewhere in this report (Figure 26). 
	Figure
	Figure 21: NMFS summer bottom trawl survey strata in the Aleutian Islands. Red lines demarcate Aleutian Islands INPFC Areas. The Central and Eastern Aleutians INPFC areas together correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area corresponds to the Eastern Aleutian ecoregion in this report. 
	Figure 21: NMFS summer bottom trawl survey strata in the Aleutian Islands. Red lines demarcate Aleutian Islands INPFC Areas. The Central and Eastern Aleutians INPFC areas together correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area corresponds to the Eastern Aleutian ecoregion in this report. 


	Sponges include unidentiﬁed Porifera, calcareous sponges, hexactinellid sponges and demosponges, which are the dominant group. Gorgonians include families of upright branching coral (Primnoidae, Plexauridae, Isididae, etc.). Hydrocorals include stylasterid corals and stony corals. Soft corals are uncommon in the Aleutian Islands bottom trawl survey, but are represented by species such as Gersemia. Sea anemones include all sea anemones captured in the bottom trawl surveys and pennatulaceans include sea pens 
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	whips. 
	Status and trends: A few general patterns are clearly discernible (Figure 22). Sponges are caught in most tows (>80%) in the AI west of the southern Bering Sea. Interestingly, the frequency of occurrence of sponges in the southern Bering Sea is relatively high, but sponge abundance is much lower than other areas. The sponge estimates for the 1983 and 1986 surveys are much lower than other years, probably due to the use of diﬀerent gear, including large tire gear that limited the catch of most sponges and po
	Gorgonian corals occur in about 20-40% of bottom trawl survey tows. Abundance of coral in all areas has declined since about 1991-1993 surveys and is at generally low levels in all areas, but the frequency of occurrence has remained steady. Hydrocorals are commonly captured, except in the southern Bering Sea. They typically occur in about 20-40% of tows in other areas. Similar to sponges, hydrocoral frequency of occurrence and abundance has decreased in the western and central Aleutian Islands over recent s
	Soft corals occur in relatively few tows, except in the eastern Aleutian Islands where they occur in about 20% of tows. Their abundance time series is dominated by a couple of years (1986 in the western Aleutians and 1991 in the central Aleutians). 
	Sea anemones are also common in survey catches (∼20-40% of tows) but abundance trends are not clear for most areas. In the Southern Bering Sea abundance and frequency of occurrence have been increasing during recent surveys until 2018 when relative abundance declined. 
	Sea pens are much more likely to be encountered in the southern Bering Sea and eastern AI than in areas further west. Abundance estimates are low across the survey area and large apparent increases in abundance, such as that seen in the eastern AI in 1997, are typically based on a single large catch. 
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	Figure
	Figure 22: Mean CPUE of structural epifauna groups by area from RACE bottom trawl surveys in the Aleutian Islands from 1980 through 2018. Error bars represent standard errors. The gray lines represent the percentage of non-zero catches. 
	Figure 22: Mean CPUE of structural epifauna groups by area from RACE bottom trawl surveys in the Aleutian Islands from 1980 through 2018. Error bars represent standard errors. The gray lines represent the percentage of non-zero catches. 


	Factors inﬂuencing observed trends: The two major threats to populations of benthic invertebrates in the Aleutian Islands have been identiﬁed as ﬁshing impacts and impacts of climate change. Both of these processes are occurring in the Aleutian Islands. Much of the benthic habitat in the Aleutians (∼50% of the shelf and slope to depths of 500 m) has been protected from mobile ﬁshing gear since 2006, however, no studies have been conducted to determine potential recovery or expansion of populations due to th
	Implications: The Aleutian Islands bottom trawl survey is not particularly good at measuring the abundance trends fore these groups of HAPC species. However, the bottom trawl surveys are reasonably adept at capturing presence or absence trends as indicated by recent distribution model validation studies for the species groups. The recent declines in sponge, gorgonians and hydrocorals in the western and central Aleutian Islands should continue to be monitored. 
	-
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	Primary Production 
	There are no updates to primary production indicators in this year’s report. See the contribution archive for previous indicator submissions at: 
	http://access.afsc.noaa.gov/reem/ecoweb/index.php 

	Zooplankton 
	Continuous Plankton Recorder Data from the Aleutian Islands and southern Bering Sea through 2017 
	Contributed by Sonia Batten, Marine Biological Association (CPR Survey), c/o 4737 Vista View Cr, Nanaimo, BC, V9V 1N8, Canada 
	Contact: soba@mba.ac.uk 

	Last updated: August 2018 
	Description of indicator: Continuous Plankton Recorders (CPRs) have been deployed in the North Paciﬁc routinely since 2000. Two transects are sampled seasonally, both originating in the Strait of Juan de Fuca. One is sampled monthly (∼Apr-Sept) and terminates in Cook Inlet; the second is sampled 3 times per year and follows a great circle route across the Paciﬁc, terminating in Japan. Several indicators are now routinely derived from the CPR data and updated annually. In this report we update three indices 
	The Aleutian Island region, including the southern Bering Sea is sampled at most 3 times per year by the east-west transect. Note that in 2017 the region was only sampled in May owing to variability in the ship’s transect which went south of the Bering Sea in the summer. New this year, the top three taxa by abundance and biomass in 2017 are presented to allow comparison across Alaskan CPR sampling regions 2. Biomass is a taxon speciﬁc value from literature, not actually measured. Some taxa are a group of ma
	Status and trends: Figure 24 shows that the diatom abundance and mesozooplankton biomass anomalies for May 2017 continued to be slightly positive, as they have been in more recent years, while the mean copepod community size anomaly was strongly negative still (it has been negative in each season sampled since summer 2014), indicating a community biased towards smaller species than typical for May. 
	Factors inﬂuencing observed trends: Recent analysis of summer CPR data in this region has revealed alternating (and opposing) patterns of high and low abundance of diatoms and large copepods between 2000 and 2012, believed to be the result of a trophic cascade caused by maturing pink salmon present in the region (Batten et al., 2018). Although the upper panel (diatoms) in Figure 24 contains data from spring and autumn as well as summer the alternating pattern is clear until 2012. The zooplankton data in Fig
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	Figure
	Figure 23: Location of the data in this report. Dots indicate actual sample positions and may overlay 
	Figure 23: Location of the data in this report. Dots indicate actual sample positions and may overlay 


	each other. 
	of 2015–2017 so we are not certain if their inﬂuence on the plankton continues, nor how to tease out the simultaneous inﬂuence of ocean climate. However, the copepod community size anomaly has been negative in each season sampled since summer 2014, which suggests a real increase in the relative abundance of smaller species, likely because of warmer than normal conditions. 
	Implications: This region appears to be subjected to top down inﬂuence by pink salmon as well as bottom up forcing by ocean climate, which is particularly challenging to interpret. Changes in community composition (e.g. abundance and composition of large diatoms, prey size as indexed by mean copepod community size) may reﬂect changes in the nutritional quality of the organism to their predators. Changes in abundance or biomass, together with size, inﬂuences availability of prey to predators. For example, wh
	-
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	Table 2: The top three taxa by abundance and biomass across Alaska CPR regions in 2017: 
	Table
	TR
	Taxa by abundance 
	Mean # sample 
	Taxa by Biomass 
	mg per sample 

	Southern Bering Sea/Aleutians 
	Southern Bering Sea/Aleutians 
	Foraminifera Neocalanus plum-chrus I IV Oithona spp. 
	214.7 102.7 91.0 
	Neocalanus plum-chrus V Neocalanus ﬂemingeri V Eucalanus bungii 
	-

	44.2 8.7 7.4 

	Alaskan Shelf 
	Alaskan Shelf 
	Pseudocalanus spp. 
	687.4 
	Neocalanus plum-chrus V 
	23.1 

	TR
	Limacina helicina Neocalanus plum-chrus V 
	153.7 47.4 
	Pseudocalanus spp. Neocalanus cristatus V VI 
	13.4 13.0 

	Oceanic NE Paciﬁc 
	Oceanic NE Paciﬁc 
	Pseudocalanus spp. 
	84.9 
	Neocalanus cristatus V VI 
	18.3 

	TR
	Tintinnida Total 
	83.8 
	Neocalanus plum-chrus V 
	5.0 

	TR
	Foraminifera 
	83.3 
	Limacina helicina 
	2.9 


	Figure
	Figure 24: Annual anomalies of three indices of lower trophic levels (see text for description and derivation) for each region shown in Figure 23. 
	Figure 24: Annual anomalies of three indices of lower trophic levels (see text for description and derivation) for each region shown in Figure 23. 
	-
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	Jellyﬁsh 
	Jellyﬁsh in the Bottom Trawl Survey 
	Contributed by Wayne Palsson and Chris Rooper, Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
	-
	Contact: wayne.palsson@noaa.gov 

	Last updated: October 2018 
	Description of indicator: RACE bottom trawl surveys in the Aleutian Islands (AI) are designed primarily to assess populations of commercially important ﬁsh and invertebrates. However many other species are identiﬁed, weighed and counted during the course of these surveys and these data may provide a measure of relative abundance for some of these species. Jellyﬁsh are probably not sampled well by the gear due to their fragility and potential for catch in the mid-water during net deployment or retrieval. The
	Status and trends: Jellyﬁsh mean catch per unit eﬀort (CPUE) is typically higher in the western and eastern AI than in other areas (Figure 25). The frequency of occurrence in trawl catches is generally from 20-60% across all areas, but has been variable. The 2006 AI survey experienced peak biomasses in all areas, whereas the 1992 survey had high abundance in the western AI only. Jellyﬁsh catches and frequency of occurrence in the AI bottom trawl survey has been steadily increasing from 2012 to 2016 surveys 
	Factors inﬂuencing observed trends: Unknown 
	Implications: The 2018 decline in CPUE and frequency of occurrence of jellyﬁsh is in contrast to the steady increase in occurrence and abundance between 2012 and 2016. The increase during these three surveys coincided with warming temperatures found during the AI survey, but despite continuing warm temperatures in 2018, the relative abundance of jellyﬁsh declined. 
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	Figure
	Figure 25: Relative mean CPUE of jellyﬁsh species by INPFC area from RACE bottom trawl surveys in the Aleutian Islands from 1980 through 2018. Error bars represent standard errors. The gray lines represent the percentage of non-zero catches. The Central and Eastern Aleutians INPFC areas together correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area corresponds to the Eastern Aleutian ecoregion in this report. 
	Figure 25: Relative mean CPUE of jellyﬁsh species by INPFC area from RACE bottom trawl surveys in the Aleutian Islands from 1980 through 2018. Error bars represent standard errors. The gray lines represent the percentage of non-zero catches. The Central and Eastern Aleutians INPFC areas together correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area corresponds to the Eastern Aleutian ecoregion in this report. 
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	Ichthyplankton 
	There are no ichthyoplankton indicators in this year’s report. See the contribution archive for previous indicator submissions at: 
	http://access.afsc.noaa.gov/reem/ecoweb/index.php 

	Forage Fish 
	There are no individual contributions with forage ﬁsh indicators in this year’s report, other than the pelagic foragers guild and the puﬃn indicators in the Report Card. See the contribution archive for previous indicator submissions at: 
	http://access.afsc.noaa.gov/reem/ecoweb/index.php 

	Groundﬁsh 
	Aleutian Islands Groundﬁsh Condition 
	Contributed by Jennifer Boldt, Chris Rooper, and Jerry HoﬀFisheries and Oceans Canada, Paciﬁc Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC, Canada V9T 6N7 Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
	1
	1
	2 
	1
	2
	Contact: chris.rooper@dfo-mpo.gc.ca 

	Last updated: October 2018 
	Description of indicator: Length-weight residuals are an indicator of somatic growth (Brodeur et al., 2004) and, therefore, a measure of ﬁsh condition. Fish condition is an indicator of how heavy a ﬁsh is per unit body length, and may be an indicator of ecosystem productivity. Positive length-weight residuals indicate ﬁsh are in better condition (i.e., heavier per unit length); whereas, negative residuals indicate ﬁsh are in poorer condition (i.e., lighter per unit length). Fish condition may aﬀect ﬁsh grow
	The AFSC Aleutian Islands bottom trawl survey data was utilized to acquire lengths and weights of individual ﬁsh for walleye pollock, Paciﬁc cod, arrowtooth ﬂounder, southern rock sole, Atka mackerel, northern rockﬁsh, and Paciﬁc ocean perch. Only standard survey stations were included in analyses. Data were combined by INPFC area; Southern Bering sea, Eastern Aleutian Islands, Central Aleutian Islands, and Western Aleutian Islands (Figure 26). Length-weight relationships for each of the seven species were 
	Status and trends:: Length-weight residuals varied over time for all species with a few notable patterns (Figure 27). Residuals for most species where there was data were negative from 2000 to 2006. Residuals were positive for all species but southern rock sole in 2010. In 2012–2016 length-weight residuals were negative across most species, and the trendline has been negative since 2010. For northern rockﬁsh, Paciﬁc cod and Paciﬁc ocean perch there has been a declining trend in residuals over the years cove
	65 
	Figure
	Figure 26: NMFS summer bottom trawl survey strata in the Aleutian Islands. Red lines demarcate Aleutian Islands INPFC Areas. The Central and Eastern Aleutians INPFC areas together correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area corresponds to the Eastern Aleutian ecoregion in this report. 
	Figure 26: NMFS summer bottom trawl survey strata in the Aleutian Islands. Red lines demarcate Aleutian Islands INPFC Areas. The Central and Eastern Aleutians INPFC areas together correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area corresponds to the Eastern Aleutian ecoregion in this report. 


	Spatial trends in residuals were also apparent for some species (Figure 28). Most species were generally in better condition in the southern Bering Sea (with the exception of Paciﬁc cod). Species generally exhibited the worst condition in the Western Aleutians (with the exception of Paciﬁc cod) Even in years where length weight residuals were positive overall (such as the early years in the northern rockﬁsh time series), length weight residuals were lower (although still positive) in the western Aleutian Is
	Factors inﬂuencing observed trends: One potential factor causing the observed temporal variability in length-weight residuals may be population size. The species that appear to exhibit declining trends over the time series, have generally been increasing in abundance throughout the Aleutians (northern rockﬁsh, Paciﬁc Ocean perch and Paciﬁc cod). In the western Aleutians, this may be especially magniﬁed, due to the overall high level of population abundance in the area. 
	Other factors that could aﬀect length-weight residuals include temperature, survey sampling timing and ﬁsh migration. The date of the ﬁrst length-weight data collected is generally in the beginning of June and the bottom trawl survey is conducted sequentially throughout the summer months from east to west. Therefore, it is impossible to separate the in-season time trend from the spatial trend in this data. 
	Implications: A ﬁsh’s condition may have implications for its survival. For example, in Prince William Sound, the condition of herring prior to the winter may in part determine their survival (Paul and Paul 1999). The condition of Aleutian Island groundﬁsh, may therefore partially contribute to their survival and recruitment. In the future, as years are added to the time series, the relationship between length-weight residuals and subsequent survival can be examined further. It is likely, however, that the 
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	Figure
	Figure 27: Length-weight residuals for seven Aleutian Islands groundﬁsh sampled in the NMFS standard summer bottom trawl survey, 1984-2018. The Central and Eastern Aleutians INPFC areas together correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area corresponds to the Eastern Aleutian ecoregion in this report. 
	Figure 27: Length-weight residuals for seven Aleutian Islands groundﬁsh sampled in the NMFS standard summer bottom trawl survey, 1984-2018. The Central and Eastern Aleutians INPFC areas together correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area corresponds to the Eastern Aleutian ecoregion in this report. 


	Distribution of Rockﬁsh Species in the Aleutian Islands 
	Contributed by Wayne Palsson and Chris Rooper, Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
	-
	Contact: wayne.palsson@noaa.gov 

	Last updated: October 2018 
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	Figure
	Figure 28: Length-weight residuals for seven Aleutian Islands groundﬁsh sampled in the NMFS standard summer bottom trawl survey, 1984-20186, by INPFC area. The Central and Eastern Aleutians INPFC areas together correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area corresponds to the Eastern Aleutian ecoregion in this report. 
	Figure 28: Length-weight residuals for seven Aleutian Islands groundﬁsh sampled in the NMFS standard summer bottom trawl survey, 1984-20186, by INPFC area. The Central and Eastern Aleutians INPFC areas together correspond to the Central Aleutians ecoregion in this report. Similarly, the Southern Bering Sea INPFC area corresponds to the Eastern Aleutian ecoregion in this report. 


	Description of indicator: In a previous analysis of rockﬁsh from 14 bottom trawl surveys in the Gulf of Alaska and Aleutian Islands (Rooper, 2008), ﬁve species assemblages were deﬁned based on similarities in their distributions along geographical position, depth, and temperature gradients. The 180 m and 275 m depth contours were major divisions between assemblages inhabiting the shelf, shelf break, and lower 
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	continental slope. Another noticeable division was between species centered in southeastern Alaska and those found in the Aleutian Islands. 
	In this time-series, the mean-weighted distributions of six rockﬁsh (Sebastes spp.) species along the three environmental gradients (depth, temperature, and position) were calculated for the Gulf of Alaska and Aleutian Islands. A weighted mean value for each environmental variable was computed for each survey as: 
	P 
	(fixi)
	Mean = P ,fi 
	where fi is the CPUE of each rockﬁsh species group in tow i and xi is the value of the environmental variable at tow i. The weighted standard error (SE) was then computed as: 
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	where n is the number of tows with positive catches. Details of the calculations and analyses can be found in Rooper (2008). These indices monitor the distributions of major components of the rockﬁsh ﬁsheries along these environmental gradients to detect changes or trends in rockﬁsh distribution. 
	Status and trends: There are four statistically signiﬁcant depth-related trends over the time series that have continued over the last several surveys, as the distribution of adult rougheye rockﬁsh, adult Paciﬁc Ocean perch, shortraker rockﬁsh, and northern rockﬁsh have been shallower in the most recent surveys of the AI (Figure 29). It appears that shallow-distributed dusky rockﬁsh and deepwater shortspine thornyhead are maintaining their same depth interval over time. Northern rockﬁsh show a signiﬁcant in
	o

	69 
	Figure
	Figure 29: Plots of mean weighted (by catch per unit eﬀort) distributions of six rockﬁsh species-groups along three environmental variables in the Aleutian Islands. Mean weighted distributions of rockﬁsh species-groups are shown for A) position, B) depth, and C) temperature. Position is the distance from Hinchinbrook Island, Alaska, with positive values west of this point. 
	Figure 29: Plots of mean weighted (by catch per unit eﬀort) distributions of six rockﬁsh species-groups along three environmental variables in the Aleutian Islands. Mean weighted distributions of rockﬁsh species-groups are shown for A) position, B) depth, and C) temperature. Position is the distance from Hinchinbrook Island, Alaska, with positive values west of this point. 


	Factors causing observed trends: The observed changes in depth and spatial distributions for adult rougheye rockﬁsh, shortraker rockﬁsh, northern rockﬁsh and adult Paciﬁc Ocean perch in the AI are probably related to changes (increases) in overall abundance. Although it is interesting to note that in the cases of adult rougheye rockﬁsh, adult Paciﬁc Ocean perch, northern rockﬁsh, and shortraker rockﬁsh their depth range has become shallower while the temperatures occupied by the species have not changed sig
	Implications: The trends in the mean-weighted distributions of rockﬁsh should continue to be monitored, with special attention to potential causes of the shift in depth and position distributions of rockﬁsh, especially as they relate to changing temperatures. During the last two surveys in 2016 and 2018, all ﬁve rockﬁsh groups were found at the highest mean-weighted temperature in the time series, and the trend for all species has been upward since the 2012 survey. 
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	Benthic Communities and Non-target Fish Species 
	Miscellaneous Species in the Aleutian Islands 
	Contributed by Wayne Palsson and Chris Rooper, Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
	-
	Contact: wayne.palsson@noaa.gov 

	Last updated: October 2018 
	Description of indicator: RACE bottom trawl surveys in the Aleutian Islands (AI) are designed primarily to assess populations of commercially important ﬁsh and invertebrates. However many other species are identiﬁed, weighed and counted during the course of these surveys and these data may provide a measure of relative abundance for some of these species. Many of these species are not sampled well by the gear or occur in areas that are not well sampled by the survey (hard, rough areas, mid-water etc.) and a
	Status and trends: Echinoderms are frequently captured in all areas of the AI surveys occurring in 80-90% of all bottom trawl hauls. Echinoderm mean catch per unit eﬀort (CPUE) is typically higher in the central and eastern AI than in other areas, although frequency of occurrence in trawl catches is consistently high across all areas. The lowest echinoderm CPUE has usually been in the southern Bering Sea, but has been increasing for the last three surveys. Eelpout CPUEs have generally been highest in the ce
	Factors inﬂuencing observed trends: Unknown 
	Implications: AI survey results provide limited information about abundance or abundance trends for these species due to problems in catchability. Therefore, the indices presented are likely of limited value to ﬁsheries management. These species are not typically commercially important, but the trends in shrimp especially should be monitored as these are an important prey base for benthic commercial species. 
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	Figure
	Figure 30: Relative mean CPUE of miscellaneous species by area from RACE bottom trawl surveys in the Aleutian Islands from 1980 through 2018. Error bars represent standard errors. The gray lines represent the percentage of non-zero catches. The Central and Eastern Aleutians correspond to the Central AI ecoregion. The Southern Bering Sea corresponds to the Eastern AI ecoregion. 
	Figure 30: Relative mean CPUE of miscellaneous species by area from RACE bottom trawl surveys in the Aleutian Islands from 1980 through 2018. Error bars represent standard errors. The gray lines represent the percentage of non-zero catches. The Central and Eastern Aleutians correspond to the Central AI ecoregion. The Southern Bering Sea corresponds to the Eastern AI ecoregion. 


	Seabirds 
	Seabird Monitoring Summary from Alaska Maritime National Wildlife Refuge 
	Contributed by Heather Renner and Nora Rojek, Alaska Maritime National Wildlife Refuge, Homer, AK Contact: heather 
	renner@fws.gov 

	Last updated: October 2018 
	Description of indicator: The Alaska Maritime National Wildlife Refuge has monitored seabirds at colonies around Alaska in most years since the early-to mid-1970s. Time series of annual breeding success and phenology (and other parameters) are available from over a dozen species at eight Refuge sites in the Gulf of Alaska, Aleutian Islands, and Bering and Chukchi Seas (Figure 31). Monitored colonies in the Aleutian Islands include Buldir (western Aleutians) and Aiktak (eastern Aleutians). Reproductive succe
	Status and trends: Seabird reproductive success diﬀered between the western Aleutians and eastern Aleutians in 2018 (Figure 32). At Buldir, ﬁsh-eating seabird species, which include tufted puﬃns and common and thick-billed murres, had low to zero productivity. Black-legged kittiwakes, storm-petrels and auklets (which consume a mix of ﬁsh and invertebrates) showed average to above average ﬂedging rates. Timing of breeding was extremely late for most species at Buldir. At Aiktak, murres had low to zero produc
	Factors inﬂuencing observed trends: In general, seabirds in the Aleutians did not experience widespread failures like the Gulf of Alaska did during the marine heat wave of the past few years. However many seabirds did poorly in 2018 at Buldir and had mixed success at Aiktak, while planktivorous seabirds have remained generally successful. This suggests that zooplankton availability was suﬃcient at both sites, but that forage ﬁsh prey were insuﬃcient to support chick-rearing at Buldir. 
	Implications: Reproductive activity of central-place foraging seabirds can reﬂect ecosystem conditions at multiple spatial and temporal scales. Tufted puﬃns completely failed at Buldir only one other time, in 2011. In general, tufted puﬃns can adapt their foraging to what is available, so their failure suggests a potentially broad lack of prey (that includes forage ﬁsh and squid). Field crew did observe some puﬃns carrying prey to chicks, but given that all breeding was late there may have been a mismatch i
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	Figure 31: Summary of reproductive success in 2018 at long-term monitored sites on the Alaska Maritime National Wildlife Refuge. Figure created by AMNWR 
	Figure 31: Summary of reproductive success in 2018 at long-term monitored sites on the Alaska Maritime National Wildlife Refuge. Figure created by AMNWR 


	Figure
	Figure 32: Summary of reproductive success of some seabird species at Chowiet (WGOA) and St Lazaria (EGOA) 
	Figure 32: Summary of reproductive success of some seabird species at Chowiet (WGOA) and St Lazaria (EGOA) 
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	Marine Mammals 
	The Marine Mammal Protection Act requires stock assessment reports to be reviewed annually for stocks designated as strategic, annually for stocks where there are signiﬁcant new information available, and at least once every 3 years for all other stocks. Each stock assessment includes, when available, a description of the stock’s geographic range, a minimum population estimate, current population trends, current and maximum net productivity rates, optimum sustainable population levels and allowable removal 
	http://www.nmfs.noaa.gov/pr/sars/region.htm

	There are no updates to marine mammal indicators in this year’s report, with the exception of those in the Report Card. See the contribution archive for previous indicator submissions at: . noaa.gov/reem/ecoweb/index.php 
	http://access.afsc

	Ecosystem or Community Indicators 
	Stability of Groundﬁsh Biomass in the Aleutian Islands 
	Contributed by George A. Whitehouse, Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle WA 
	Contact: andy.whitehouse@noaa.gov 

	Last updated: October 2018 
	Description of indicator: The stability of the groundﬁsh community total biomass is measured with the inverse biomass coeﬃcient of variation (1 divided by the coeﬃcient of variation of total groundﬁsh biomass (1/CV[B])). This indicator provides a measure of the stability of the ecosystem and its resistance to perturbations. The variability of total community biomass is thought to be sensitive ﬁshing and is expected to increase with increasing ﬁshing pressure (Blanchard and Boucher 2001). This metric is calc
	Status and trends: The stability of groundﬁsh biomass in the Aleutian Islands has been relatively constant over the time period examined (Figure 33). There has been a gradual decrease in this indicator from a high of 4.6 in 2010 to a low of 3.5 in 2018. However, the slope of a trendline was not signiﬁcant (p > 0.05). 
	Factors inﬂuencing observed trends: Fishing is expected to inﬂuence this metric as ﬁsheries can selectively target and remove larger, long-lived species eﬀecting population age structure (Berkeley et al. 2004, Hsieh et al. 2006). Larger, longer-lived species can become less abundant and be replaced by smaller shorter-lived species (Pauly et al. 1998). Larger, longer-lived individuals help populations to endure prolonged periods of unfavorable environmental conditions and can take advantage of favorable cond
	-
	-
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	Figure
	Figure 33: The stability of groundﬁsh in the Aleutian Islands represented with the metric, one divided by the coeﬃcient of variation of total groundﬁsh biomass (1/CV[B]). Ten years of data are required to calculate this metric, so this time series begins in 2010 after the tenth occurrence of the NMFS/AFSC summer bottom-trawl survey over the time period examined (1983-2018). The dashed line represents the mean of the time series (2010–2018). 
	Figure 33: The stability of groundﬁsh in the Aleutian Islands represented with the metric, one divided by the coeﬃcient of variation of total groundﬁsh biomass (1/CV[B]). Ten years of data are required to calculate this metric, so this time series begins in 2010 after the tenth occurrence of the NMFS/AFSC summer bottom-trawl survey over the time period examined (1983-2018). The dashed line represents the mean of the time series (2010–2018). 


	(CV) due to increased sensitivity to environmental dynamics (Hsieh et al. 2006). Interannual variation in this metric could also be inﬂuenced by interannual variation in species abundance in the trawl survey catch, and patchy spatial distribution for some species. This metric, as calculated here with trawl-survey data, reﬂects the stability of the groundﬁsh community that is represented in the catch of the GOA summer bottom-trawl survey. In general, as total biomass decreases species spatial distribution ma
	Walleye pollock and Atka mackerel are two of the biomass dominant species in the catch of the Aleutian Islands bottom trawl survey. The ﬁrst two years of the trawl survey included in this metric (1983 and 1986) were years dominated by walleye pollock. In subsequent years Atka mackerel had a higher biomass index than walleye pollock. The biomass index for Atka mackerel is generally more variable than the index for walleye pollock. This has resulted in the gradually decreasing values of this indicator over th
	Implications: The biomass of the groundﬁsh community in the western GOA appears to be stable over the time period examined. Although there are only 5 data points for this metric, there is no indication of a clear trend in the stability of the groundﬁsh community biomass. 
	Mean Length of the Fish Community in the Aleutian Islands 
	Contributed by George A. Whitehouseand Geoﬀrey M. LangJoint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle WA Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle WA 
	1 
	2 1
	2
	Contact: andy.whitehouse@noaa.gov 

	Last updated: October 2018 
	77 
	Description of indicator: The mean length of the groundﬁsh community tracks ﬂuctuations in the size of groundﬁsh over time. This size-based indicator is thought to be sensitive to the eﬀects of commercial ﬁsheries because larger predatory ﬁsh are often targeted by ﬁsheries and their selective removal would reduce mean size (Shin et al. 2005). Fish lengths are routinely recorded during the biennial NMFS bottom trawl survey of the Aleutians Islands. The survey time series began in 1980 and was conducted on a 
	Species-speciﬁc mean lengths are calculated for groundﬁsh species from the length measurements collected during the trawl survey. The mean length for the groundﬁsh community is calculated with the species-speciﬁc mean lengths, weighted by biomass indices (Shin et al. 2010) calculated from the bottom-trawl survey. This indicator speciﬁcally applies to the portion of the demersal groundﬁsh community eﬃciently sampled with the trawling gear used by NMFS during the summer bottom-trawl survey of the AI and have 
	Status and trends: The mean length of the Aleutian Islands groundﬁsh community in 2018 is 41.8 cm. This is up one cm from 2017 and is the highest value over the time series (Figure ﬁg.ailen). This indicator has shown some year to year variation but has generally stayed close to the long term mean. The interannual variation is a reﬂection of the variation in the abundance of species sampled for lengths. The slope of a trendline was not signiﬁcant (α=0.05). 
	Figure 34: Mean length of the groundﬁsh community sampled during the NMFS/AFSC summer bottom-
	trawl survey of the Aleutian Islands (1983–2018). The groundﬁsh community mean length is weighted by the relative biomass of the sampled species. The dashed line represents the time series mean (1983– 2018). 
	Factors inﬂuencing observed trends: This indicator is speciﬁc to the ﬁshes that are routinely caught and sampled during the NMFS summer bottom-trawl survey. The estimated mean length can be biased if speciﬁc species-size classes are sampled more or less than others, and is sensitive to spatial variation in the size distribution of species. Changes in ﬁsheries management or ﬁshing eﬀort could also aﬀect the 
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	mean length of the groundﬁsh community. Modiﬁcations to ﬁshing gear, ﬁshing eﬀort, and targeted species could aﬀect the mean length of the groundﬁsh community if diﬀerent size classes and species are subject to changing levels of ﬁshing mortality. The mean length of groundﬁsh could also be inﬂuenced by ﬂuctuations in recruitment, where a large cohort of small forage species could reduce mean length of the community. Environmental factors could also inﬂuence ﬁsh growth and mean length by eﬀecting the availab
	Implications: The mean length of the groundﬁsh community in the Aleutian Islands has been stable over the bottom-trawl time series (1983–2018). There is no evidence at this time of an obvious trend in mean size or indication that an external pressure such as climate or ﬁshing is aﬀecting this indicator. 
	Mean Lifespan of the Fish Community in the Aleutian Islands 
	Contributed by George A. Whitehouseand Geoﬀrey M. LangJoint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle WA Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle WA 
	1 
	2 
	1
	2
	Contact: andy.whitehouse@noaa.gov 

	Last updated: October 2018 
	Description of indicator: The mean lifespan of the community is deﬁned by Shin et al. (2010) as, “a proxy for the mean turnover rate of species and communities” and is intended to reﬂect “ecosystem stability and resistance to perturbations.” The indicator for mean lifespan of the groundﬁsh community is modeled after the method for mean lifespan presented in (Shin et al. 2010). Lifespan estimates of groundﬁsh species regularly encountered during the NMFS/AFSC biennial summer bottom-trawl survey of . gov/reem
	the Aleutian Islands were retrieved from the AFSC Life History Database (https://access.afsc.noaa

	Status and trends: The mean lifespan of the Aleutian Islands demersal ﬁsh community in 2018 is 22.3 which is up from 19.6 in 2016 and above the long term mean of 20.9 over the years 1983–2018 (Figure 35). This exhibits some interannual variation but is generally stable. The slope of a trendline was not signiﬁcantly diﬀerent from zero. 
	Factors inﬂuencing observed trends: Fishing can aﬀect the mean lifespan of the groundﬁsh community by preferentially targeting larger, older ﬁshes, leading to decreased abundance of longer-lived species and increased abundance of shorter-lived species (Pauly et al. 1998). Interannual variation in mean lifespan can be inﬂuenced by the spatial distribution of species and the diﬀerential selectivity of species to the trawling gear used in the survey. Strong recruitment events or periods of week recruitment cou
	Implications: The groundﬁsh mean lifespan has been generally stable over the time series of the summer bottom trawl survey. There is no indication at this time of an increasing or decreasing trend in mean lifespan. Species that are short-lived are generally smaller and more sensitive to environmental variation than larger, longer-lived species (Winemiller 2005). Longer-lived species help to dampen the eﬀects of environmental variability, allowing populations to persist through periods of unfavorable conditi
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	Figure
	Figure 35: The mean lifespan of the western Gulf of Alaska demersal ﬁsh community (blue line), weighted by relative biomass calculated from the NMFS/AFSC summer bottom-trawl survey. The dashed line represents the mean of the time series (1984–2017) and the solid line is a trendline with slope = 0.169. 
	Figure 35: The mean lifespan of the western Gulf of Alaska demersal ﬁsh community (blue line), weighted by relative biomass calculated from the NMFS/AFSC summer bottom-trawl survey. The dashed line represents the mean of the time series (1984–2017) and the solid line is a trendline with slope = 0.169. 


	Disease Ecology Indicators 
	There are no disease ecology indicators in this year’s report. See the contribution archive for previous indicator submissions at: 
	http://access.afsc.noaa.gov/reem/ecoweb/index.php 

	Fishing and Human Dimensions Indicators 
	Indicators presented in this section are intended to provide a summary of the status of several ecosystem-scale indicators related to ﬁshing and human economic and social well-being. These indicators are organized around objective categories derived from U.S. legislation and current management practices: 
	‹ 
	Maintaining diversity 
	‹ 
	Maintaining and restoring ﬁsh habitats 
	‹ 
	Sustainability (for consumptive and non-consumptive uses) 
	‹ 
	Seafood production ‹ Proﬁts 
	‹ Recreation 
	‹ 
	Employment ‹ Socio-cultural 
	The indicators presented are meant to represent trends in diﬀerent aspects of the general management objective, but some indicators are better proxies than others. For example, seafood production is a fairly good proxy for the production of seafood to regional, national, and international markets but ex-vessel and wholesale value are imperfect proxies for harvesting and processing sector proﬁts. This suite of indicators will continue to be revised and updated to provide a more holistic representation of hum
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	Maintaining Diversity: Discards and Non-Target Catch 
	Time Trends in Groundﬁsh Discards 
	Contributed by Jean Lee, Resource Ecology and Fisheries Management Division, AFSC, NMFS, NOAA, and Alaska Fisheries Information Network, Paciﬁc States Marine Fisheries Commission 
	Contact: jean.lee@noaa.gov 

	Last updated: September 2018 
	Description of indicator: Estimates of groundﬁsh discards for 1993-2002 are sourced from NMFS Alaska Regions blend data, while estimates for 2003 and later come from the Alaska Regions Catch Accounting System. These sources, which are based on observer data in combination with industry landing and production reports, provide the best available estimates of groundﬁsh discards. Discard rates as shown in the ﬁgure below are calculated as the weight of groundﬁsh discards divided by the total (i.e., retained and
	-

	Status and trends: Since 1993 discards and discard rates of groundﬁsh in federally-managed Alaskan groundﬁsh ﬁsheries have generally declined across the trawl pollock, non-pollock trawl, and ﬁxed gear (hookand-line and pot) sectors in the Aleutian Islands (AI). Over the most recent 5-year period (2013–2017), the annual discard biomass and discard rate in the AI ﬁxed gear sector have averaged 1215 mT and 7%, respectively, compared to averages of 2438 mT and 11% over the 1993–2017 period. Discard biomass in t
	-

	Factors inﬂuencing observed trends: Discards of groundﬁsh may occur for economic or regulatory reasons. Economic discards include discards of lower value and unmarketable ﬁsh in order to maximize harvest or production value. Regulatory discards are those required by regulation, such as discards of species where harvest has reached the allowable catch limit and which may no longer be retained. Mechanisms used in North Paciﬁc groundﬁsh ﬁsheries for reducing discards include: 
	‹ 
	Limited access privilege programs (LAPPs), which allocate catch quotas and may reduce economic discards by removing the race for ﬁsh 
	‹ 
	In-season closure of ﬁsheries once target or bycatch species quotas are reached ‹ Minimum retention and utilization standards for certain ﬁsheries 
	‹ 
	Maximum retainable amounts (MRAs) specifying the amounts of non-target species that harvesters may retain relative to other groundﬁsh species that remain open to directed ﬁshing. MRAs reduce regulatory discards by allowing for limited retention of species harvested incidentally in directed ﬁsheries. 
	-

	In the Aleutian Islands ﬁxed gear (hook-and-line and pot) sector, discards of ﬂatﬁsh accounted for the majority of discards by weight through the 1990s. Catch and discards of ﬂatﬁsh in the longline sableﬁsh 
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	Figure
	Figure 36: Total biomass and percent of total catch biomass of FMP groundﬁsh discarded in the ﬁxed gear, pollock trawl, and non-pollock trawl sectors, 1993–2017, for the AI and central, eastern, and western AI subregions (data by subregion available only for 2009 and forward). Discard rates are calculated as total discard weight of FMP groundﬁsh divided by total retained and discarded weight of FMP groundﬁsh for the sector (includes only catch counted against federal TACs). 
	Figure 36: Total biomass and percent of total catch biomass of FMP groundﬁsh discarded in the ﬁxed gear, pollock trawl, and non-pollock trawl sectors, 1993–2017, for the AI and central, eastern, and western AI subregions (data by subregion available only for 2009 and forward). Discard rates are calculated as total discard weight of FMP groundﬁsh divided by total retained and discarded weight of FMP groundﬁsh for the sector (includes only catch counted against federal TACs). 


	ﬁshery peaked in 1994 and generally declined following implementation of the Paciﬁc Halibut and Sableﬁsh Individual Fishing Quota (IFQ) program in 1995, possibly as a result of the slower pace of the ﬁshery under the program. In the longline cod ﬁshery, ﬂatﬁsh catch and discards grew steadily from 1993, peaking in 2001 at 3250 mT of discards. Since 2002, total discard biomass of ﬂatﬁsh in the ﬁxed gear sector has remained comparatively low due both to reductions in ﬂatﬁsh discard rates and generally lower c
	Full retention requirements for pollock and Paciﬁc cod were implemented in 1998 for federally-permitted vessels ﬁshing for groundﬁsh, leading to declines in discards of these species across all sectors in the Aleutian Islands. The trawl pollock ﬁshery was closed between 1998 and 2004 for Steller Sea lion recovery and has had minimal to no participants since reopening in 2005. 
	In the non-pollock trawl sector, Atka mackerel and rockﬁsh have historically accounted for the largest amounts of catch and discards by weight. Amendments 79 and 80 to the BSAI Groundﬁsh FMP established a Groundﬁsh Retention Standard Program and a cooperative-based limited access privilege program (LAPP) for the non-AFA BSAI trawl catcher processor ﬂeet, which targets Atka mackerel and Paciﬁc ocean perch in the Aleutian Islands. Both amendments were intended in part to address the high rates of discard in t
	Implications: Minimizing ﬁshery discards is recognized as an ecological, economic, and moral imperative in various multilateral initiatives and in National Standard 9 of the Magnuson-Stevens Fishery Conservation and Management Act (Alverson et al. 1994, FAO 1995, NMFS 2011). Fishery bycatch adds to the total human impact on biomass without providing a beneﬁt to the Nation and as such are seen as “contrary to responsible stewardship and sustainable utilization of marine resources” (Kelleher 2005). Bycatch ma
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	Figure
	Figure 37: Total biomass of FMP groundﬁsh discarded in the AI by sector and week of the ﬁshing 
	Figure 37: Total biomass of FMP groundﬁsh discarded in the AI by sector and week of the ﬁshing 


	season, 2013–2018 (data for 2018 is shown through week 36). Plotted heights are not comparable across 
	ﬁsheries. 
	utilization of target species and increases the uncertainty around total ﬁshing-related mortality, making it more diﬃcult to assess stocks, deﬁne overﬁshing levels, and monitor ﬁsheries for overﬁshing (Alverson et al. 1994, NMFS 2011, Clucas 1997). Although ecosystem eﬀects of discards are not fully understood, discards of whole ﬁsh and oﬀal have the potential to alter energy ﬂow within ecosystems and have been observed to result in changes to habitat (e.g., oxygen depletion in the benthic environment) and 
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	Time Trends in Non-Target Species Catch 
	Contributed by George A. Whitehouse, Sarah Gaichas, and Stephani ZadorJoint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle WA, Ecosystem Assessment Program, Northeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Woods Hole MA, Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
	1
	2
	3 1
	2
	3
	Contact: andy.whitehouse@noaa.gov 

	Last updated: August 2018 
	Description of indicator: We monitor the catch of non-target species in groundﬁsh ﬁsheries in the Aleutian Islands (AI) ecosystem. The catch could not be summarized at the ecoregion level due to conﬁdentiality issues and is instead presented at the LME level (i.e., AI). In previous years we included the catch of “other” species, “non-speciﬁed” species, and forage ﬁsh in this contribution. However, stock assessments have now been developed or are under development for all groups in the “other species” catego
	http://www.afsc.noaa.gov/refm/stocks/assessments.htm

	1. 
	1. 
	1. 
	Scyphozoan jellyﬁsh 

	2. 
	2. 
	Structural epifauna (seapens/whips, sponges, anemones, corals, tunicates) 

	3. 
	3. 
	Assorted invertebrates (bivalves, brittle stars, hermit crabs, miscellaneous crabs, sea stars, marine worms, snails, sea urchins, sand dollars, sea cucumbers, and other miscellaneous invertebrates). 


	Total catch of non-target species is estimated from observer species composition samples taken at sea during ﬁshing operations, scaled up to reﬂect the total catch by both observed and unobserved hauls and vessels operating in all FMP areas. Catch since 2003 has been estimated using the Alaska Region’s Catch Accounting System. This sampling and estimation process does result in uncertainty in catches, which is greater when observer coverage is lower and for species encountered rarely in the catch. 
	Status and trends: The catch of Scyphozoan jellyﬁsh in the AI gradually decreased from 2011–2015, then increased in 2016 and increased again to a peak value in 2017 (Figure 38). Scyphozoan jellyﬁsh are primarily caught in the pollock ﬁshery. The catch of structural epifauna in the AI has been variable from 2011–2017, with a peak catch in 2015. The catch of structural epifauna in 2016 was half of the catch in 2015. The catch of structural epifauna in 2017 is the third highest over this time period. Sponge co
	Factors inﬂuencing observed trends: The catch of non-target species may change if ﬁsheries change, if ecosystems change, or both. Because non-target species catch is unregulated and unintended, if there have been no large-scale changes in ﬁshery management in a particular ecosystem, then large-scale signals in the non-target catch may indicate ecosystem changes. Alternatively, changes in allowable catch for target species, external market forces, ﬁshing eﬀort, or ﬁshing gear restrictions can aﬀect the catch
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	Figure 38: Total catch of non-target species (tons) in AI groundﬁsh ﬁsheries (2011–2017). Please note 
	the diﬀerent y-axis scales between regions and species groups. 
	Catch trends may be driven by changes in biomass or changes in distribution (overlap with the ﬁshery) or both. Fluctuations in the abundance of jellyﬁsh in the EBS are inﬂuenced by a suite of biophysical factors aﬀecting the survival, reproduction, and growth of jellies including temperature, sea ice phenology, wind-mixing, ocean currents, and prey abundance (Purcell, 2005; Brodeur et al., 2008). 
	Implications: The catch of structural epifauna species and assorted invertebrates is very low compared with the catch of target species. The recent increase in the catch of scyphozoan jellies may reﬂect interannual variation in jellyﬁsh biomass or changes in the overlap with ﬁsheries. Abundant jellyﬁsh may have a negative impact on ﬁshes as they compete with planktivorous ﬁshes for prey resources (Purcell and Sturdevant, 2001), and additionally, jellyﬁsh may prey upon the early life history stages (eggs and
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	Seabird Bycatch Estimates for Groundﬁsh Fisheries in the Aleutian Islands, 2007-2017 
	Contributed by Anne Marie Eich, Stephani Zador, Shannon Fitzgeraldand Jennifer MondragonSustainable Fisheries Division, Alaska Regional Oﬃce, National Marine Fisheries Service, NOAA Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
	1
	2
	2 
	1 1 
	2
	Contact: annemarie.eich@noaa.gov 

	Last updated: August 2018 
	Description of indicator: This report provides estimates of the numbers of seabirds caught as bycatch in commercial groundﬁsh ﬁsheries operating in federal waters of the U.S. Exclusive Economic Zone surrounding the Aleutian Islands for the years 2007 through 2017. Estimates of seabird bycatch from earlier years using diﬀerent methods are not included here. Fishing gear types represented are demersal longline, pot, pelagic trawl, and non-pelagic trawl. These numbers do not apply to gillnet, seine, or troll ﬁ
	Estimates are based on two sources of information, (1) data provided by NMFS-certiﬁed ﬁshery observers deployed to vessels and ﬂoating or shoreside processing plants (AFSC, 2011), and (2) industry reports of catch and production. The NMFS Alaska Regional Oﬃce Catch Accounting System (CAS) produces the estimates (Cahalan et al., 2014, 2010). The main purpose of the CAS is to provide near real-time delivery of accurate groundﬁsh and prohibited species catch and bycatch information for inseason management deci
	Status and trends: The numbers of seabirds estimated to be caught incidentally in the Aleutian Islands ﬁsheries in 2017 increased from that in 2016, and exceeded the 2007–2016 average of 475 by 174% (Table 3; Figure 39). Notably, 2017 experienced the highest number of birds estimated to be caught incidentally in the Aleutian Islands ﬁsheries in this time series, 2007–2017. This increase was largely due to an increase in shearwater bycatch. In 2017, the number of shearwaters increased by 721% compared to tha
	Factors inﬂuencing observed trends: There are many factors that may inﬂuence annual variation in bycatch rates, including seabird distribution, population trends, prey supply, and ﬁsheries activities. For example, a marked decline in overall numbers of birds caught after 2002 reﬂected the increased use of seabird mitigation devices. A large portion of the freezer longline ﬂeet adopted these measures in 2002, followed by regulation requiring them for the rest of the ﬂeet beginning in February 2004. Since 200
	86 
	Figure
	Figure 39: Total estimated seabird bycatch in eastern Bering Sea (EBS), Aleutian Islands (AI), and Gulf of Alaska (GOA) groundﬁsh ﬁsheries, all gear types combined, 2007 to 2017. 
	Figure 39: Total estimated seabird bycatch in eastern Bering Sea (EBS), Aleutian Islands (AI), and Gulf of Alaska (GOA) groundﬁsh ﬁsheries, all gear types combined, 2007 to 2017. 


	Figure
	Figure 40: Total estimated albatross bycatch in eastern Bering Sea (EBS), Aleutian Islands (AI), and 
	Figure 40: Total estimated albatross bycatch in eastern Bering Sea (EBS), Aleutian Islands (AI), and 


	Gulf of Alaska (GOA) groundﬁsh ﬁsheries, all gear types combined, 2007 to 2017. 
	devices. Since 2004, work has continued on developing new and reﬁning existing mitigation gear (Dietrich and Melvin, 2008). 
	The longline ﬂeet has traditionally been responsible for about 90% of the overall seabird bycatch in Alaska, as determined from the data sources noted above. However, standard observer sampling methods on trawl vessels do not account for additional mortalities from net entanglements, cable strikes, and other sources. Thus, the trawl estimates may be downward biased. For example, the 2010 estimate of trawl-related seabird mortality is 823, while the additional observed mortalities (not included in this estim
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	Table 3: Estimated seabird bycatch in the Aleutian Islands groundﬁsh ﬁsheries for all gear types, 2007 through 2017. Note that these numbers represent extrapolations from observed bycatch, not direct observations. See text for estimation methods. 
	Species Group 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 
	Unidentiﬁed Albatrosses 
	Unidentiﬁed Albatrosses 
	Unidentiﬁed Albatrosses 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	22 
	0 
	0 
	0 

	Short-tailed Albatross 
	Short-tailed Albatross 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 

	Laysan Albatross 
	Laysan Albatross 
	11 
	51 
	35 
	122 
	12 
	76 
	108 
	50 
	150 
	69 
	14 

	Black-footed Albatross 
	Black-footed Albatross 
	0 
	0 
	0 
	0 
	5 
	0 
	12 
	7 
	19 
	0 
	0 

	Northern Fulmar 
	Northern Fulmar 
	77 
	308 
	306 
	368 
	50 
	15 
	34 
	56 
	974 
	72 
	221 

	Shearwaters 
	Shearwaters 
	734 
	39 
	49 
	88 
	42 
	60 
	0 
	68 
	23 
	184 
	1,056 

	Storm Petrels 
	Storm Petrels 
	0 
	44 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 

	Gulls 
	Gulls 
	38 
	19 
	36 
	175 
	22 
	12 
	23 
	0 
	37 
	4 
	0 

	Kittiwakes 
	Kittiwakes 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 

	Murres 
	Murres 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 

	Puﬃns 
	Puﬃns 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 

	Auklets 
	Auklets 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	2 
	0 
	0 
	2 

	Other Birds 
	Other Birds 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 

	Unidentiﬁed Birds 
	Unidentiﬁed Birds 
	5 
	1 
	7 
	17 
	0 
	3 
	8 
	0 
	0 
	0 
	10 


	Grand Total 865 462 433 770 131 166 185 205 1,203 329 1,303 
	given the rare nature of the event. For example, (Dietrich and Fitzgerald, 2010) found in an analysis of 35,270 longline sets from 2004 to 2007 that the most predominant species, northern fulmar, only occurred in 2.5% of all sets. Albatross, a focal species for conservation eﬀorts, occurred in less than 0.1% of sets. However, given the vast size of the ﬁshery, the total estimated bycatch can add up to hundreds of albatross or thousands of fulmars (Eich et al., 2017). 
	Implications: The increase in the number of estimated seabirds caught incidentally in the Aleutian Islands in 2017 relative to the year before was primarily due to a dramatic increase in shearwater bycatch. Estimated seabird bycatch also increased from 2016 to 2017 in the Gulf of Alaska, but that was primarily attributed to increased numbers of black-footed albatross and northern fulmar. Estimated seabird bycatch decreased from 2016 to 2017 in the eastern Bering Sea, but 2016 had an unusually large number o
	The eﬀects of the “Warm Blob”, that resulted in an extreme marine heat wave from 2014–2016, appeared to be moderating and dissipating in 2017 (Zador and Yasumiishi, 2017). The warm temperatures caused variability in prey availability for seabirds. Over the last few years, seabird die-oﬀs appear to have increased, presumably linked to the extreme marine heat wave from 2014–2016. Numerous seabirds have been reported dead, in poor body condition, or in reproductive failure (Zador and Yasumiishi, 2017; Siddon e
	-

	It is diﬃcult to determine how seabird bycatch numbers and trends are linked to changes in ecosystem components because seabird mitigation gear is used in the longline ﬂeet. There does appear to be a link between poor ocean conditions and the peak bycatch years, on a species-group basis. Fishermen have noted in some years that the birds appear starved and attack baited longline gear more aggressively. From year to year, broad changes in total seabird bycatch for all regions combined, up to 5,746 birds per y
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	between 2007 and 2017. This probably indicates changes in food availability rather than distinct changes in how well the ﬂeet employs mitigation gear. A focused investigation of this aspect of seabird bycatch is needed and could inform management of poor ocean conditions if seabird bycatch rates (reported in real time) were substantially higher than normal. 
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	Maintaining and Restoring Fish Habitats 
	Areas Closed to Bottom Trawling in the BSAI and GOA 
	Contributed by John Olson, Habitat Conservation Division, Alaska Regional Oﬃce, National Marine Fisheries Service, NOAA 
	-
	Contact: john.v.olson@noaa.gov 

	Last updated: October 2018 
	Description of indicator: Many trawl closures have been implemented to protect benthic habitat or reduce bycatch of prohibited species (i.e., salmon, crab, herring, and halibut) (Figure 41, Table 4). Some of the trawl closures are in eﬀect year-round while others are seasonal. In general, year-round trawl closures have been implemented to protect vulnerable benthic habitat. Seasonal closures are used to reduce bycatch by closing areas where and when bycatch rates had historically been high. 
	Status and trends: Additional measures to protect the declining western stocks of the Steller sea lion began in 1991 with some simple restrictions based on rookery and haulout locations; in 2000 and 2001 more speciﬁc ﬁshery restrictions were implemented. In 2001, over 90,000 nmof the Exclusive Economic Zone (EEZ) of Alaska was closed to trawling year-round. Additionally, 40,000 nmwere closed on a seasonal basis. State waters (0-3 nmi) are also closed to bottom trawling in most areas. A motion passed the Nor
	2 
	2 
	2 

	In 2010, the Council adopted area closures for Tanner crab east and northeast Kodiak Island. Federal waters in Marmot Bay are closed year round to vessels ﬁshing with nonpelagic trawl gear. In two other designated areas, Chiniak Gully and ADF&G statistical area 525702, vessels with nonpelagic trawl gear can only ﬁsh if they have 100% observer coverage. To ﬁsh in any of the three areas, vessels ﬁshing with pot gear must have minimum 30% observer coverage. 
	Implications: With the Arctic FMP closure included, almost 65% of the U.S. EEZ of Alaska is closed to bottom trawling. For additional background on ﬁshery closures in the U.S. EEZ oﬀ Alaska, see Witherell and Woodby (2005). 
	Steller Sea Lion closure maps are available here: 
	http://www.fakr.noaa.gov/sustainablefisheries/sslpm/atka_pollock.pdf 
	http://www.fakr.noaa.gov/sustainablefisheries/sslpm/atka_pollock.pdf 

	http://www.fakr.noaa.gov/sustainablefisheries/sslpm/pcod_nontrawl.pdf 
	http://www.fakr.noaa.gov/sustainablefisheries/sslpm/pcod_nontrawl.pdf 

	http://www.fakr.noaa.gov/sustainablefisheries/sslpm/cod_trawl.pdf 
	http://www.fakr.noaa.gov/sustainablefisheries/sslpm/cod_trawl.pdf 
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	Figure
	Figure 41: Year-round groundﬁsh closures in the U.S. Exclusive Economic Zone (EEZ) oﬀ Alaska, excluding most SSL closures. 
	Figure 41: Year-round groundﬁsh closures in the U.S. Exclusive Economic Zone (EEZ) oﬀ Alaska, excluding most SSL closures. 


	Area Disturbed by Trawl Fishing Gear in Alaska 
	Contributed by John V. Olson Habitat Conservation Division, Alaska Regional Oﬃce, National Marine Fisheries Service, NOAA 
	Contact: john.v.olson@noaa.gov 

	Last updated: October 2018 
	Description of indicator: Fishing gear can impact habitat used by a ﬁsh species for the processes of spawning, breeding, feeding, or growth to maturity. This indicator uses output from the Fishing Eﬀects (FE) model to estimate the area of geological and biological features disturbed across Alaska’s Large Marine Ecosystems, utilizing spatially-explicit VMS data. The time series for this indicator is available since 2003, when widespread VMS data became available. 
	Status and trends: The percent of area disturbed due to commercial ﬁshing interactions (pelagic and non-pelagic trawl, longline, and pot) decreased steadily from 2008 to the present in the Bering Sea, with slightly decreasing or steady trends in the Gulf of Alaska and Aleutian Islands (Figures 42 and 43). 
	Figure 42: Percent habitat reduction, all gear types combined, from 2003 through 2017. 
	Factors inﬂuencing observed trends: Trends in seaﬂoor area disturbed can be aﬀected by numerous variables, such as ﬁsh abundance and distribution, management actions (e.g., closed areas), changes in the structure of the ﬁsheries due to rationalization, increased technology (e.g., increased ability to ﬁnd ﬁsh), markets for ﬁsh products, and changes in vessel horsepower and ﬁshing gear. Intensive ﬁshing in an area can result in a change in species diversity by attracting opportunistic ﬁsh species which feed o
	92 
	habitat loss/degradation due to ﬁshing gear eﬀects. The footprint of habitat damage varies with gear (type, weight, towing speed, depth of penetration), the physical and biological characteristics of the areas ﬁshed, recovery rates of living substrates in the areas ﬁshed, and management changes that result in spatial redistribution of ﬁshing eﬀort. 
	Between 2003 and 2008, variability in area disturbed was driven largely by the seasonality of ﬁshing in the Bering Sea. In 2008, Amendment 80 was implemented, which allocated BSAI Yellowﬁn sole, Flathead sole, Rock sole, Atka mackerel, and Aleutian Islands Paciﬁc ocean perch to the head and gut trawl catcher processor sector, and allowed qualiﬁed vessels to form cooperatives. The formation of cooperatives reduced overall eﬀort in the ﬂeet while maintaining catch levels. In 2010, trawl sweep gear modiﬁcation
	Figure
	Figure 43: Map of percentage area disturbed per grid cell for all gear types. Eﬀects are cumulative, and 
	Figure 43: Map of percentage area disturbed per grid cell for all gear types. Eﬀects are cumulative, and 


	consider impacts and recovery of features from 2003 to 2017. 
	Implications: The eﬀects of changes in ﬁshing eﬀort on habitat are largely unknown, although our ability to quantify those eﬀects has increased greatly with the development of a Fishing Eﬀects model as a part of the 2015 EFH Review (/ NMFS/TM_NMFS_AFKR/TM_NMFS_FAKR_15.pdf). The 2005 EFH FEIS, 2010 EFH Review, and 2015 
	ftp://ftp.library.noaa.gov/noaa_documents.lib
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	EFH Review concluded that ﬁsheries do have long term eﬀects on habitat, and these impacts were determined to be minimal and not detrimental to ﬁsh populations or their habitats. These previous EFH analyses indicated the need for improved ﬁshing eﬀects model parameters. With the FE model, our ability to analyze ﬁshing eﬀects on habitat has grown exponentially. Vessel Monitoring System data provides a much more detailed treatment of ﬁshing intensity, allowing better assessments of the eﬀects of overlapping eﬀ
	New methods and criteria were developed to evaluate whether the eﬀects of ﬁshing on EFH are more than minimal and not temporary on managed ﬁsh stocks in Alaska. Criteria were developed by and reviewed by the Council and its advisory committees in 2016, and stock assessment authors in 2017. In April 2017, based on the analysis with the FE model, the Council concurred with the Plan Team consensus that the eﬀects of ﬁshing on EFH do not currently meet the threshold of more than minimal and not temporary, and m
	Although the impacts of ﬁshing across the domain are very low, it is possible that localized impacts may be occurring. The issue of local impacts is an area of active research. 
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	Table 4: Time series of groundﬁsh trawl closure areas in the BSAI and GOA, 1995-2017. LLP= License Limitation Program; HCA = Habitat Conservation Area; HCZ = Habitat Conservation Zone. 
	Area 
	Area 
	Area 
	Year 
	Location 
	Season 
	Area size 
	Notes 

	BSAI 
	BSAI 
	1995 
	Area 512 
	year-round 
	8,000 nm2 
	closure in place since 

	TR
	1987 

	TR
	Area 516 
	3/15-6/15 
	4,000 nm2 
	closure in place since 

	TR
	1987 

	TR
	Chum Salmon Savings Area 
	8/1-8/31 
	5,000 nm2 
	re-closed at 42,000 

	TR
	chum salmon 

	TR
	Chinook Salmon Savings 
	trigger 
	9,000 nm2 
	closed at 48,000 Chi-

	TR
	Area 
	nook salmon 

	TR
	Herring Savings Area Zone 1 Zone 2 Pribilofs HCA Red King Crab Savings Area 
	trigger trigger trigger year-round year-round 
	30,000 nm2 30,000 nm2 50,000 nm2 7,000 nm2 4,000 nm2 
	trigger closure trigger closure trigger closure pelagic trawling al
	-


	TR
	lowed 

	TR
	Walrus Islands SSL Rookeries 
	5/1-9/30 seasonal ext. 
	900 nm2 5,100 nm2 
	12 mile no-ﬁshing zones 20 mile extensions at 8 

	TR
	rookeries 

	TR
	1996 
	Nearshore Bristol Bay Trawl 
	year-round 
	19,000 nm2 
	expanded area 512 clo-

	TR
	Closure 
	sure 

	TR
	C. opilio bycatch limitation 
	trigger 
	90,000 nm2 
	trigger closure 

	TR
	zone 

	TR
	2000 
	Steller Sea Lion protections Pollock haulout trawl exclu-
	* No trawl all year 
	11,900 nm2 

	TR
	sion zones for EBS, AI * areas 

	TR
	include GOA 

	TR
	No trawl (Jan-June)* No Trawl Atka Mackerel 
	14,800 nm2 29,000 nm2 

	TR
	restrictions 

	TR
	2006 
	Essential Fish Habitat 

	TR
	AI Habitat Conservation 
	No bottom trawl all year 
	279,114 nm2 

	TR
	Area 

	TR
	AI Coral Habitat Protection 
	No bottom contact gear 
	110 nm2 

	TR
	Areas Bowers Ridge Habitat Con-
	all year No mobile bottom tend
	-

	5,286 nm2 

	TR
	2008 
	servation Zone Northern Bering Sea Re-
	ing ﬁshing gear No bottom trawl all year 
	66,000 nm2 

	TR
	search Area 

	TR
	Bering Sea HCA St. Matthews HCA St. Lawrence HCA Nunivak/Kuskokwim Closure 
	No bottom trawl all year No bottom trawl all year No bottom trawl all year No bottom trawl all year 
	47,100 nm2 4,000 nm2 7,000 nm2 9,700 nm2 

	TR
	Area 

	Arctic GOA 
	Arctic GOA 
	2009 1995 
	Arctic Closure Area Kodiak King Crab Protection 
	No Commercial Fishing year-round 
	148,393 nm2 1,000 nm2 
	red king crab closures, 

	TR
	Zone Type 1 Kodiak King Crab Protection 
	2/15-6/15 
	500 nm2 
	1987 red king crab closures, 

	TR
	1998 
	Zone Type 2 SSL Rookeries Southeast Trawl Closure 
	year-round year-round 
	3,000 nm2 52,600 nm2 
	1987 10 mile no-trawl zones adopted as part of the 

	TR
	LLP 

	TR
	Sitka Pinnacles Marine re-
	year-round 
	3.1 nm2 

	TR
	serve 

	TR
	2000 
	Pollock haulout trawl exclu-
	No trawl all year 
	11,900 nm2* 

	TR
	sion zones for GOA* areas in
	-


	TR
	clude EBS, AI 
	No trawl (Jan-June) 
	14,800 nm2 

	TR
	2006 
	Essential Fish Habitat 

	TR
	GOA Slope Habitat Conser-
	No bottom trawl all year 
	2,100 nm2 

	TR
	vation Area 

	TR
	GOA Coral Habitat Protec-
	No bottom tending gear 
	13.5 nm2 

	TR
	tion Measures Alaska Seamount Habitat 
	all year No bottom tending gear 
	5,329 nm2 

	TR
	2010 
	Protection Measures Marmot Bay Tanner Crab 
	all year No bottom trawl all year 
	112 nm2 

	TR
	Protection Area 
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	Sustainability (for consumptive and non-consumptive uses) 
	Fish Stock Sustainability Index and Status of Groundﬁsh, Crab, Salmon, and Scallop Stocks 
	Contributed by George A. Whitehouse Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, WA 
	Contact: andy.whitehouse@noaa.gov 

	Last updated: July 2018 
	Description of indicator: The Fish Stock Sustainability Index (FSSI) is a performance measure for the sustainability of ﬁsh stocks selected for their importance to commercial and recreational ﬁsheries (). The FSSI will increase as overﬁshing is ended and stocks rebuild to the level that provides maximum sustainable yield. The FSSI is calculated by awarding points for each ﬁsh stock based on the following rules: 
	-
	http://www.nmfs.noaa.gov/sfa/fisheries_eco/status_of_fisheries

	1. Stock has known status determinations: 
	(a) 
	(a) 
	(a) 
	overﬁshing level is deﬁned = 0.5 

	(b) 
	(b) 
	overﬁshed biomass level is deﬁned = 0.5 


	2. 
	2. 
	2. 
	Fishing mortality rate is below the “overﬁshing” level deﬁned for the stock = 1.0 

	3. 
	3. 
	Biomass is above the “overﬁshed” level deﬁned for the stock = 1.0 

	4. 
	4. 
	Biomass is at or above 80% of the biomass that produces maximum sustainable yield (BMSY) = 1.0 (this point is in addition to the point awarded for being above the “overﬁshed” level) 


	The maximum score for each stock is 4. 
	In the Alaska Region, there are 36 FSSI stocks and an overall FSSI of 144 would be achieved if every stock scored the maximum value, 4. Over time, the number of stocks included in the FSSI has changed as stocks have been added and removed from Fishery Management Plans (FMPs). Prior to 2015 there were 35 FSSI stocks and maximum possible score of 140. To keep FSSI scores for Alaska comparable across years we report the FSSI as a percentage of the maximum possible score (i.e., 100%). 
	Additionally, there are 29 non-FSSI stocks, two ecosystem component species complexes, and Paciﬁc halibut which are managed under an international agreement. None of the non-FSSI stocks are known to be subject to overﬁshing, be overﬁshed, or to be approaching an overﬁshed condition. For more information on non-FSSI stocks see the Status of U.S. Fisheries webpage. 
	Within the BSAI region there are 22 FSSI stocks. The assessment for sableﬁsh is based on aggregated data from the GOA and BSAI regions. In FSSI contributions prior to 2017, the sableﬁsh FSSI score was included among BSAI species. Starting with last year’s contribution sableﬁsh was removed from the BSAI FSSI contribution and placed in the GOA FSSI contribution (see the Gulf of Alaska Ecosystem Considerations Report). With few exceptions, groundﬁsh species (or species 
	-
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	Tab018. BSAI FSSI (22 stocks) Yes No Unknown Undeﬁned N/A 
	le 5: Summary of status for the 22 FSSI stocks in the BSAI, updated through June 2

	Overﬁshing 
	Overﬁshing 
	Overﬁshing 
	0 
	22 
	0 
	0 
	0 

	Overﬁshed 
	Overﬁshed 
	1 
	21 
	0 
	0 
	0 

	Approaching Overﬁshed Condition 
	Approaching Overﬁshed Condition 
	0 
	21 
	0 
	0 
	1 


	complex) in the BSAI are managed as single stocks and not separately for the Bering Sea and Aleutian Islands. As such, the FSSI scores are reported for the BSAI as a whole. At this time it is not practical to report FSSI separately for the Bering Sea or Aleutian Islands. 
	Status and trends: As of June 30, 2018, no BSAI groundﬁsh stock or stock complex is subjected to overﬁshing, is considered to be overﬁshed, or to be approaching an overﬁshed condition (Table 5). Among BSAI crab stocks, the Pribilof Islands blue king crab stock is considered to be overﬁshed but is not subject to overﬁshing. This stock is in year 4 of a rebuilding plan. 
	The current overall Alaska FSSI is 135 out of a possible 144, or 93.75%, based on updates through June 2018 and is the highest score observed over the time period examined (Figure 44). FSSI increased 2.5 points from last year’s score and is the net result of increased scores for two king crab stocks in the EBS and a lower score for snow crab in the EBS. The overall Alaska FSSI has generally trended upwards from 80% in 2006 to 93.75% in 2018. 
	The BSAI groundﬁsh FSSI score is 56 out of a maximum possible 56, and BSAI king and tanner crabs are 28 out of a possible 32. The overall Bering Sea/Aleutian Islands score is 84 out of a maximum possible score of 88 (Table 6). Since 2006 the BSAI overall FSSI has increased from 74% up to 95.45% in 2018 (Figure 45). 
	Figure
	Figure 44: The trend in overall Alaska FSSI, as a percentage of the maximum possible FSSI from 2006 through 2018. The maximum possible FSSI is 140 for 2006 to 2014, and from 2015 on it is 144. All scores are reported through the second quarter (June) of each year, and are retrieved from the Status of U.S. Fisheries website: . 
	Figure 44: The trend in overall Alaska FSSI, as a percentage of the maximum possible FSSI from 2006 through 2018. The maximum possible FSSI is 140 for 2006 to 2014, and from 2015 on it is 144. All scores are reported through the second quarter (June) of each year, and are retrieved from the Status of U.S. Fisheries website: . 
	http://www.nmfs.noaa.gov/sfa/fisheries_eco/status_of_fisheries
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	Factors inﬂuencing observed trends: The overall trend in Alaska FSSI has been positive over the duration examined here (2006-2018). The increase in overall score in 2018 is the net result of increased scores for two king crab stocks in the EBS and a decreased score for EBS snow crab. All other FSSI scores for individual stocks of crabs and groundﬁsh are unchanged. In the EBS, the Pribilofs Islands blue king crab stock gained a point by no longer being subject to overﬁshing. The primary driver of decline for
	Figure 45: The trend in FSSI from 2006 through 2018 for the BSAI region as a percentage of the maximum possible FSSI. All scores are reported through the second quarter (June) of each year, and are retrieved from the Status of U.S. Fisheries website: http://www.nmfs.noaa.gov/sfa/fisheries_ eco/status_of_fisheries. 
	Implications: The majority of Alaska groundﬁsh ﬁsheries appear to be sustainably managed. No stocks in the BSAI are subject to overﬁshing and only a single crab stock is considered to be overﬁshed (Pribilof Islands blue king crab). No other stocks or stock complexes in the BSAI are known to be approaching an overﬁshed condition. 
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	Table 6: BSAI FSSI stocks under NPFMC jurisdiction updated through June 2018 adapted from the Status of U.S. Fisheries website: http: //. See Box A for endnotes and deﬁnition of stocks and stock complexes. 
	www.nmfs.noaa.gov/sfa/fisheries_eco/status_of_fisheries

	Stock Overﬁshing Overﬁshed Approaching Action Progress B/BMSY FSSI Score 
	Blue king crab -Pribilof IslandsNo Yes N/A Continue Year 4 0.09 2 
	a 

	rebuilding of plan Blue king crab -Saint Matthews Island No No No N/A N/A 0.57 3 Golden king crab -Aleutian Islands No No No N/A N/A 1.18 4 Red king crab -Bristol Bay No No No N/A N/A 0.93 4 Red king crab -Norton Sound No No No N/A N/A 1.29 4 Red king crab -Pribilof Islands No No No N/A N/A 1.64 4 Snow crab -Bering Sea No No No N/A N/A 0.60 3 Southern Tanner crab -Bering Sea No No No N/A N/A 2 4 BSAI Alaska plaice No No No N/A N/A 2.03 4 BSAI Atka mackerel No No No N/A N/A 1.41 4 BSAI Arrowtooth Flounder No
	b 
	c 
	d 
	e 

	Box A. Endnotes and stock complex deﬁnitions for FSSI stocks listed in Table xx, adapted from the Status of U.S. Fisheries website: _ of_fisheries/ 
	http://www.nmfs.noaa.gov/sfa/fisheries_eco/status

	(a) 
	(a) 
	(a) 
	A new rebuilding plan for this stock was implemented January 1, 2015 but does not specify a target rebuilding date because it is not known when the stock is expected to rebuild. There is no directed ﬁshing for the blue king crab-Pribilof Islands and the majority of blue king crab habitat is closed to bottom trawling, and beginning in 2015 there is a prohibition on directed cod pot ﬁshing in the Pribilof Islands Habitat Conservation Zone (PIHCZ). For this stock to rebuild, the stock would likely require mult

	(b) 
	(b) 
	BSAI Blackspotted and Rougheye Rockﬁsh consists of Blackspotted Rockﬁsh and Rougheye Rockﬁsh. An assessment of the combined species provides the overﬁshed determination, and the OFL is based on the combined-species assessment. 

	(c) 
	(c) 
	Flathead Sole Complex consists of Flathead Sole and Bering Flounder. Flathead Sole accounts for the overwhelming majority of the biomass and is regarded as the indicator species for the complex. The overﬁshed determination is based on the combined abundance estimates for the two species; the overﬁshing determination is based on the OFL, which is computed from the combined abundance estimates for the two species. 
	-


	(d) 
	(d) 
	Rock Sole Complex consists of Northern Rock Sole and Southern Rock Sole (NOTE: These are two distinct species, not two separate stocks of the same species). Northern Rock Sole accounts for the overwhelming majority of the biomass and is regarded as the indicator species for the complex. The overﬁshed determination is based on the combined abundance estimates for the two species; the overﬁshing determination is based on the OFL, which is computed from the combined abundance estimates for the two species. 
	-


	(e) 
	(e) 
	The Skate Complex consists of Alaska Skate, Aleutian Skate, Bering Skate, Big Skate, Butterﬂy Skate, Commander Skate, Deepsea Skate, Mud Skate, Okhotsk Skate, Roughshoulder Skate, Roughtail Skate, Whiteblotched Skate, and Whitebrow Skate. Alaska Skate is assessed and is the indicator species for this complex. 
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	Seafood Production 
	Economic Indicators in the Aleutian Islands Ecosystem—Landings 
	Contributed by Benjamin Fissel, Jean Lee , and Steve KasperskiResource Ecology and Fishery Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA Alaska Fisheries Information Network, Paciﬁc States Marine Fisheries Commission Contact
	1
	1,2
	1 1
	2
	: ben.ﬁssel@noaa.gov 

	Last updated: September 2018 
	Description of indicator: Landings are a baseline metric for characterizing commercial economic production in the Aleutian Islands (AI). Landings are the retained catch of ﬁsh and are plotted here by functional group. While many species comprise a functional group, it is the handful of species that ﬁshermen target that dominate the economic metrics in each group. The primary target species in the apex predators functional group is Paciﬁc cod, though there are some landings of non-halibut ﬂatﬁsh such as arro
	Status and trends: Landings in the AI are primarily from two functional groups: pelagic foragers and apex predators (Figure 46). Atka mackerel comprise roughly two thirds of the pelagic foragers. Atka mackerel landings have been fairly stable except for 2012–2015 when the Total Allowable Catch (TAC) was reduced to support populations of Steller sea lions. Paciﬁc ocean perch, and northern rockﬁsh make up most of the rest of the pelagic forager catch, and landings of these species have shown an increasing tre
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	Figure 46: Aleutian Islands ﬁshery landings by functional group (pounds in log scale). 
	Factors inﬂuencing observed trends: Paciﬁc cod in the AI has been assessed separately from the eastern Bering Sea (BS) since 2013, which lowered the TAC from previous historical levels. Flatﬁsh remain jointly assessed for the BS and the AI. The allocation between Paciﬁc cod and ﬂatﬁsh comprise part of the pelagic forager, apex predators, and benthic foragers’ functional groups in the BS/AI that are capped at 2 million metric tons. The sum of the Allowable Biological Catches (ABC) for the species in the func
	Implications:Landings depict one aspect of the raw stresses from harvesting imposed on the AI ecosystems functional group through ﬁshing. This information can be useful in identifying areas where harvesting may be impacting diﬀerent functional groups in times where the functional groups within the ecosystem might be constrained. In the AI ecosystem, pelagic foragers make up the largest share of the catch, followed closely by apex predators, with motile epifauna and benthic foragers constituting a much small
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	Salmon and Halibut Subsistence Trends in the Aleutian Islands 
	Contributed by Sarah P. Wiseand Kim SparksResource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA Alaska Fisheries Information Network, Paciﬁc States Marine Fisheries Commission 
	1 
	1,2 1
	2
	Contact: sarah.wise@noaa.gov 

	Last updated: August 2018 
	Description of indicator: Subsistence uses of wild resources are deﬁned as “noncommercial, customary and traditional uses” for a variety purposes, including nutritional, trade, and cultural purposes (ADF&G 2018). Rural Alaskans harvest an average of 155 pounds of ﬁsh per person per year (Fall et al., 2017). Salmon and halibut were chosen as representative focal species for tracking subsistence trends. Harvest data were compiled from the Alaska Department of Fish and Game (ADF&G) Division of Subsistence for 
	Status and trends: Although all ﬁve species of Paciﬁc salmon are resident in the AI, targeted species and number harvested varies greatly among communities. ADF&G records report an increase in household permits in the EAI. When considered as a whole, salmon harvests appear to follow a cyclical pattern of increasing, followed by a few years of decreasing harvest (Figure 47). However, if sockeye salmon are removed from the analysis, there is a general pattern of declining harvests with the exception of 2015. 
	-
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	Figure 47: Subsistence salmon harvests between 1990–2016 in the Eastern Aleutians 
	ADF&G records report a decrease in salmon permits in the CAI. In 2016 only one (1) individual held a subsistence salmon permit compared to 61 in 1990. In the CAI, sockeye salmon is harvested almost exclusively, and harvest rates are largely variable (Figure 48). The historical average since 1990 is 241 salmon, with the most recent total salmon subsistence harvest in 2016 estimated at 0 ﬁsh. There are no data for 1994. 
	Figure 48: Subsistence salmon harvests between 1990–2016 in the Central Aleutians. 
	Based on ADF&G data, statewide subsistence halibut harvest (in pounds) declined substantially between 2004 and 2012, with a slight uptick in 2014–2016. There were approximately 8,847 subsistence permits issued in the whole of Alaska, harvesting an estimated 36,467 halibut in 2016. The International Paciﬁc Halibut Commission (IPHC) reduced the suggested coastwide catch for 2018 at 28.03 million pounds. Subsistence halibut harvests represent less than two million pounds, with most coming from British Columbia
	-
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	harvest in the EAI represented 1% of that in Alaska, following the same decreasing trend from 2004–2016 as that observed statewide (Figure 49). The number of Subsistence Halibut Registration Certiﬁcate (SHARC) permits issued has stayed relatively stable. No subsistence harvest of halibut was reported in the CAI in 2016. The amount of halibut subsistence harvest substantially declined from 2004–2014, with the exception of 2008 (Figure 50). The number of SHARC permits issued has declined from 19 in 2003 to 3 
	-

	Figure
	Figure 49: Estimated Subsistence harvest of halibut in the Eastern Aleutians ecoregion, 2003–2012, 2014, and 2016 (lbs. net weight). 
	Figure 49: Estimated Subsistence harvest of halibut in the Eastern Aleutians ecoregion, 2003–2012, 2014, and 2016 (lbs. net weight). 


	Figure 50: Estimated Subsistence harvest of halibut in the Central Aleutians ecoregion, 2003–2012, 2014, and 2016 (lbs. net weight). 
	Factors inﬂuencing observed trends: Salmon harvests are closely monitored and documented regularly. In the EAI the species composition of total salmon harvest has shifted toward more sockeye salmon. Interviews suggest a general preference for sockeye, which may contribute to the increasing trend, as could the decrease in availability of other species. In the CAI, decreases in salmon harvest may suggest a decrease in availability of targeted species, a reduction in reliance on subsistence ﬁsheries, or reﬂect
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	The reasons for the decline in subsistence halibut harvest are complex and in large part related to participation in the survey and methodology (Fall and Lemons, 2015). Due to budgetary constraints, data collection eﬀorts were reduced in size and scope, which is consistent with the decrease in reported harvests, suggesting that some of the decrease in halibut harvest is a result of a lower participation in the survey. In certain regulatory areas, there is a downturn in renewal of halibut permits (SHARCs) af
	-

	Implications: Food security among subsistence users is a growing concern. Changing environmental conditions are aﬀecting ﬁsh movement, health, and abundance, directly aﬀecting the people relying on subsistence ﬁsheries to survive. Subsistence ﬁshing and hunting represent a major source of food security and cultural identity for many Alaskans. Rural households rely on subsistence resources to supplement food during the winter when other sources of food may be unavailable or prohibitively expensive (Loring an
	-
	-
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	Proﬁts 
	Economic Indicators in the Aleutian Islands Ecosystem—Value and Unit Value 
	Contributed by Benjamin Fissel, Jean Lee , and Steve KasperskiResource Ecology and Fishery Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA Alaska Fisheries Information Network, Paciﬁc States Marine Fisheries Commission Contact
	1
	1,2
	1 1
	2
	: ben.ﬁssel@noaa.gov 

	Last updated: September 2018 
	Description of indicator: Three metrics are used to characterize the economic value derived from catches of commercial species in the Aleutian Islands (AI): 1) ex-vessel value, 2) ﬁrst-wholesale value, and 3) real ﬁrst-wholesale to total catch unit value. The ex-vessel value and ﬁrst-wholesale values are aggregated by functional group. While many species comprise a functional group, those few targeted by ﬁshermen dominate the economic metrics in each group. The primary target of apex predators is Paciﬁc cod
	Ex-vessel value is the un-processed value of the retained catch (landings) and it can informally be thought of as the revenue that ﬁshermen receive from the catch. First-wholesale value is the revenue from the catch after primary processing by a processor or revenue by sales of processed ﬁsh. It is a 
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	more comprehensive measure of value to the ﬁshing industry as it includes ex-vessel value as well as the value-added revenue from processing which goes to the processing sector. Real ﬁrst-wholesale value to total catch unit value is the ratio of value to biomass extracted as a result of commercial ﬁsh harvesting. The measure of biomass extracted in this index includes retained catch, discards, and prohibited species catch. This metric answers the question: “how much revenue is the ﬁshing industry receiving 
	Status and trends: Ex-vessel value and landings trends are closely related because ex-vessel value is the revenue from landings. Pelagic foragers have had the highest ex-vessel value since 2010 due to both higher landings and prices for Atka mackerel and rockﬁsh (Figure 107). In contrast, landings of apex predators have dropped since 2010 because of decreasing landings of Paciﬁc cod. Halibut has signiﬁcantly smaller catches than Paciﬁc cod, but because halibut is a high priced species, it accounts for rough
	Figure 51: Aleutian Islands ﬁshery landings by functional group (pounds in log scale). 
	First-wholesale revenue by functional group in the AI show similar qualitative results to the ex-vessel indices (Figure 52). First wholesale value in the apex predator group has been decreasing over roughly the last decade as catches of both Paciﬁc cod and halibut have gone down. First wholesale value in the pelagic forager group has been increasing with increasing prices for Atka mackerel and Paciﬁc ocean perch. First-wholesale value in the benthic forager group dropped in 2014 as production of the higher 
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	Figure 52: Aleutian Islands ﬁshery landings by functional group (pounds in log scale). 
	Although ﬁrst-wholesale to total catch unit value includes discards, they currently represent a relatively small fraction of total catch (Figure 53). Because of the comparatively larger ﬁrst-wholesale value from pelagic foragers and apex predators, the unit value index is more heavily weighted towards these groups. The increase in the unit value index after 2010 is the result of increasing value from the pelagic foragers as prices for this group have been rising. Contrary to the Gulf of Alaska and Eastern B
	Figure
	Figure 53: Aleutian Islands ﬁshery landings by functional group (pounds in log scale). 
	Figure 53: Aleutian Islands ﬁshery landings by functional group (pounds in log scale). 
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	Factors inﬂuencing observed trends: Ex-vessel value trend diﬀerences with respect to landings reﬂect diﬀerences in the average prices of the individual species that make up the functional groups. Hence, landings of pelagic foragers may be larger than motile epifauna, but their ex-vessel value has been fairly similar for several years because motile epifauna (especially king crab) commands a higher price. Ex-vessel price drivers include, but are not limited to, i) demand for processed products, ii) volume of
	Diﬀerences between ﬁrst-wholesale indices and ex-vessel indices are inﬂuenced by diﬀerences in the amount and types of value-added processing that is done. For example, Paciﬁc cod is processed in numerous product forms which can inﬂuence the revenue generated by the processing sector. Since the total catch in the real ﬁrst-wholesale to total catch unit value metric includes discards, historically, decreasing discard volumes and rates has contributed to increases in the total catch unit value. This was obser
	Implications: The economic metrics displayed here provide perspective on how the human component of the ecosystem feeds oﬀ of and receives value from the AI ecosystem. Ex-vessel value is a measure of the ultimate value from the raw resources extracted, and ﬁrst-wholesale value metrics show how humans, through processing, add value to the harvest for their own uses. In contrast to the landings metrics that are heavily dominated by the pelagic forager and apex predator functional groups, ex-vessel revenues an
	-
	-
	-

	Recreation 
	There are currently no indicators to reﬂect recreational ﬁshing activity in the Aleutian Island. 
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	Employment 
	Unemployment Trends in the Aleutian Islands 
	Contributed by Anna Lavoie Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
	Contact: anna.lavoie@noaa.gov 

	Last updated: September 2018 
	Description of indicator: Unemployment, is a signiﬁcant factor in the AI and for groundﬁsh ﬁshery management, as most of the communities in the region rely upon ﬁsheries to support their economies. Employment in this region is important for population retention and community viability (Rasmussen et al. 2015). Advancements in socio-ecological systems (SES) research has demonstrated the importance of incorporating social variables in ecosystem management and monitoring, and unemployment reﬂects the economic s
	-
	-

	This report summarizes trends in unemployment rates over time in the Aleutian Islands chain including the eastern, central, and western ecoregions. The seven AI ﬁshing communities included in this analysis are Attu Station, Adak, Atka, Nikolski, Unalaska/Dutch Harbor, Akutan and False Pass. Unemployment data was aggregated and weighted to account for varying community populations across the Alaska East Boroughs and Aleutians West Census Areas. Estimates are presented annually from 1990–2017 (ADLWD 2018). 
	Status and trends: Unemployment rates in the AI, between 1990 and 2017, were lower than state and national rates (Figures 54–55). The eastern AI had higher unemployment rates than central AI. There is no update on the western AI population data as the one community (Attu Station) has had minimal or zero population for several years. According to the 2010 census, the population of 21 consisted of coast guard personnel who left the area when the Casco Cove Coast Guard Station was closed in August 2010. 
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	Figure
	Figure 54: Unemployment rates for Aleutian Islands ecoregions, Alaska and the USA between 1990 and 2017. 
	Figure 54: Unemployment rates for Aleutian Islands ecoregions, Alaska and the USA between 1990 and 2017. 


	Figure
	Figure 55: Unemployment rates for Alaska, regions within Alaska, and the USA between 1990 and 2017. 
	Figure 55: Unemployment rates for Alaska, regions within Alaska, and the USA between 1990 and 2017. 
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	Unemployment rates, as of 2017, were 2.35% in the eastern AI and 0.24% in central AI. Unemployment across the AI chain peaked in 1998, 2004, 2009, and 2012 driven by eastern AI which is consistent with state and national trends. The AI region has had the lowest unemployment rates of any region of Alaska since 2014, in particular, the central AI has maintained rates less than 1.0%. Unemployment in the central AI decreased 2.53% between 1990 and 2017, and increased from 0.2% to 2.3% in the eastern AI, in acco
	-

	Factors inﬂuencing observed trends: Alaska has experienced several boom and bust economic cycles. Peaks in employment occurred during the construction of the Alaska pipeline in the 1970s and oil boom of the 1980s, whereas unemployment peaks occurred following completion of the pipeline, during the oil bust of the late 1980s, and during the great recession of 2007-2009 (ADLWD 2016) . However, during the great recession, Alaskas employment decreased only 0.4% whereas the national drop was 4.3% partly because 
	Implications: Fisheries contribute to community vitality of the Aleutian Islands and reduced ﬁshing opportunities and employment may lead to out-migration and population decline, particularly in small communities with few job alternatives (Donkersloot and Carothers 2016). Changes in groundﬁsh policy and management, such as increased regulations, may have implications for these ﬁshery-dependent communities. 
	-

	Socio-Cultural Dimensions 
	Deﬁning Fishing Communities 
	Within the context of marine resource management, what constitutes a ﬁshing community is complex and has been long debated. Fishing communities can be deﬁned, geographically, occupationally, or based on shared practice or interests. The Magnuson Stevens Fishery and Conservation Act (MSA) deﬁnes ﬁshing communities as those “substantially dependent on or substantially engaged in the harvest or processing of ﬁshery resources to meet social and economic needs, and includes ﬁshing vessel owners, operators, and c
	-
	-
	-
	-

	(1) provide for the sustained participation of such communities; and (2) to the extent practicable, minimize adverse economic impacts on such communities” (MSA, National Standard 8, last updated 4/26/2018). Identifying and considering appropriate communities is central to eﬀective marine resource management. The National Marine Fisheries Service interprets the MSA deﬁnition to emphasize the relevance of geographic place, stating “A ﬁshing community is a social or economic group whose members reside in a spe
	-
	-
	-
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	valuable to the ﬂow of people, information, goods, and services. Some managers have turned to “multiple constructions of communities” (Olson, 2005) to better understand ﬁshing communities. 
	By restricting the deﬁnition of ﬁshing community to a geographic placeparticularly in the marine environment. St. Martin and Hall-Arber (2008) argue that geographically restricted notions of community ignore the complexity of social landscapes. The authors expand “community’ to include those areas, resources, and social networks on which people depend(St. Martin and Hall-Arber, 2008). In an eﬀort to acknowledge womens role in ﬁsheries, Calhoun, Conway, and Russel (2016) discuss ﬁshing community in terms of 
	In the context of the Ecosystem Status Reports, ﬁshing communities were identiﬁed by three criteria: 1) Geographical location, 2) Current ﬁshing engagement (commercial and recreational); and 3) Historical linkages to subsistence ﬁshing. Engagement was deﬁned as the value of each indicator as a percentage of the total present in the state. The quantitative indicators used to represent commercial ﬁsheries participation included commercial ﬁsheries landings (e.g., landings, number of processors, number of vess
	-

	The data used was gathered from the Alaska Department of Fish and Game Division of Subsistence database. A broad deﬁnition of subsistence ﬁshing community was used for this analysis due to the importance of subsistence foods for daily life, particularly in rural Alaska. An estimated 36.9 million pounds of wild foods are harvested annually by rural subsistence users. Residents of more populated urban areas harvest about 13.4 million pounds of wild food under subsistence, personal use, and sport regulations. 
	Contributed by Sarah P. Wise 
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	Human Population Trends in the Aleutian Islands 
	Contributed by Anna Lavoie Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 
	Contact: anna.lavoie@noaa.gov 

	Last updated: September 2018 
	Description of indicator: Population stability and growth are an important indicators of community viability (Rasmussen et al. 2015). Human population trends in the Aleutian Islands (AI) are particularly relevant to groundﬁsh ﬁshery management because many communities in the region rely upon ﬁsheries to support their local economies and to meet subsistence and cultural needs. Advancements in socio-ecological systems (SES) research has demonstrated the importance of incorporating social variables in ecosyste
	-
	-
	-

	This section summarizes trends in human population over time in the AI. The seven AI ﬁshing communities included in this analysis are Attu Station, Adak, Atka, Nikolski, Unalaska/Dutch Harbor, Akutan and False Pass. Communities were divided into two categories as part of this analysis; small (population <1,500); and large (population ≥1,500). Population was calculated by aggregating community level data between 1890 and 1990 (DCCED 2016) and annually from 1990–2017 (ADLWD 2018). Populations were aggregated 
	Status and trends: As of 2017 the total population including all AI communities was 5,755 people. The total population of the AI has ﬂuctuated since 1880 with the highest population increase of 374.0% occurring between 1960 and 1970 (Table 7 and Figure 56). The population of the AI increased from 1920 to 1940 and from 1960 to 1990. Between 1990 and 2017 the population declined by 32.4%. Notable decreases occurred between 1900 and 1910, between 1940 and 1950, and between 1990 and 2000. The eastern AI has had
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	Table 7: Aleutian Islands population 1880–2017. Percent change rates are decadal until 2010. 
	Year Alaska % change AI East % change AI Central % change AI West % change AI Total % change 
	1880 
	1880 
	1880 
	33426 
	192 
	132 
	107 
	431 

	1890 
	1890 
	32052 
	-4.11 
	397 
	106.77 
	132 
	0 
	101 
	-5.61 
	630 
	46.17 

	1900 
	1900 
	63592 
	98.4 
	488 
	22.92 
	128 
	-3.03 
	-100 
	616 
	-2.22 

	1910 
	1910 
	64356 
	1.2 
	281 
	-42.42 
	0 
	-99.22 
	281 
	-54.38 

	1920 
	1920 
	55036 
	-14.48 
	448 
	59.43 
	56 
	5500 
	504 
	79.36 

	1930 
	1930 
	59278 
	7.71 
	465 
	3.79 
	103 
	83.93 
	29 
	597 
	18.45 

	1940 
	1940 
	72524 
	22.35 
	563 
	21.08 
	89 
	-13.59 
	44 
	-51.72 
	696 
	16.58 

	1950 
	1950 
	128643 
	77.38 
	365 
	-35.17 
	85 
	-4.49 
	-100 
	450 
	-35.34 

	1960 
	1960 
	226167 
	75.81 
	458 
	25.48 
	119 
	40 
	577 
	28.22 

	1970 
	1970 
	302583 
	33.79 
	398 
	-13.1 
	2337 
	1863.87 
	2735 
	374 

	1980 
	1980 
	401851 
	32.81 
	1611 
	304.77 
	3408 
	45.83 
	5019 
	83.51 

	1990 
	1990 
	550043 
	36.88 
	3782 
	134.76 
	4731 
	38.82 
	8513 
	69.62 

	2000 
	2000 
	626932 
	13.98 
	5099 
	34.82 
	408 
	-91.38 
	20 
	8650 
	-35.08 

	2010 
	2010 
	710231 
	13.29 
	5456 
	7 
	387 
	-5.15 
	21 
	5 
	8895 
	6.1 

	2017 
	2017 
	737080 
	3.78 
	4400 
	-0.65 
	362 
	-6.46 
	0 
	-100 
	5755 
	-1.86 


	Figure 56: Aleutian Islands population by ecoregion and total. 
	The population of most AI communities decreased between 1990 and 2017. Adaks (central AI) population decreased by 93.35%, Nikolski CDP by 51.43%, Atka by 44.90%, and False Pass by 39.13%. Akutan and Unalaska (eastern AI) had steady population increases during this period (68.59% and 40.54% respectively). Although Indigenous Americans comprise up to 82% of the population of small communities in remote areas and more Native Americans reside in Alaska than any U.S. state (Goldsmith et al. 2004), only 42% of th
	Factors inﬂuencing observed trends: The population decrease of the AI between 1990 and 2017 (32.4%) was inconsistent with State trends (increase of 34.0%). The large decrease in population can be attributed to the closure of the Adak Naval operating base in 1997 and general migration from small communities to economic centers. Alaska has high rates of population turnover because of migration (ADLWD 2016). The main factors that aﬀect population growth are natural increase (births minus deaths) and migration,
	-

	Population trends in Alaska are largely the result of changes in resource extraction and military 
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	activity (Williams 2004). Historically, the gold rush of the late 19th century doubled the States population by 1900, and later WWII activity and oil development fueled the population growth (ADLWD 2016). However, in the AI, population changes were largely driven by military activities during WWII, the establishment of Coast Guard bases, and the development of ﬁsheries following the establishment of the EEZ (late 1970s), joint ventures (1980s), and later development of the domestic ﬁshery in the early 1990s
	Implications: Population shifts can aﬀect pressures on ﬁsheries resources, however inferences about human impacts on resources should account for economic shifts and global market demand for seafood and other extractive resources of the ecoregion. Population change in Alaska is largely fueled by increased net migration rather than natural increase, and there has been increased migration from rural to urban areas. This is evident with population decline of several small communities such as Nikolski and Atka.
	-
	-
	-

	K–12 School Enrollment, Graduation and Dropout rates in the Aleutian Islands 
	Contributed by Sarah P. Wiseand Kim SparksResource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA Alaska Fisheries Information Network, Paciﬁc States Marine Fisheries Commission 
	1 
	1,2 1
	2
	Contact: sarah.wise@noaa.gov 

	Last updated: September 2018 
	Description of indicator: Ensuring the productivity and sustainability of ﬁshing communities is a core mandate of Federal ﬁsheries management. Community vitality is evaluated here based on K–12 public school enrollment. Enrollment trends are particular relevant due to the value of schools to community cohesion and identity as well as reﬂecting conditions for resident families as opposed to the transient population. There are no schools in the Western Aleutian Islands ecoregion (WAI). 
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	Public school enrollment and dropout rates were analyzed by borough and community level in order to examine broader regional trends as well as the social and economic vitality of individual rural communities. Enrollment statistics for K-12 grades by school and region were compiled for 1996– 2018 from the Alaska Department of Education and Early Development (. ak.us/stats/). Current school locations and names were veriﬁed using the EPA EJ mapping tool (/). The Eastern Aleutians ecoregion (EAI) is covered by 
	http://www.eed.state
	https://ejscreen.epa.gov/mapper

	Status and trends: While Unalaska schools in the EAI have maintained relatively stable enrollment since 1996, Nikolski, Akutan, and False Pass have diminished dramatically and are no longer viable. Nikolski closed in 2010, and False Pass had six students in 2018. Alaska schools lose state funding if enrollment drops below 10 students. Akutan currently has 13 students enrolled (Figure 57). For the 2015–16 and 2016–17 cohorts in the EAI, the graduation rates in the Unalaska and Aleutian East school districts 
	-

	Both Adak and Atka schools in the CAI have experienced declining enrollment. As of 2018, Adak has 13students enrolled while Atka has 12 (Figure 58). Both of these communities are small and extremely remote; losing a school would be detrimental to either community. Graduation rates were at 50% in 2015, increased to 100% in 2016 and remain there. There are no data for dropout rates from the Aleutian Region School District in the CAI. 
	Figure
	Figure 57: Eastern Aleutian Islands school enrollment 1996–2018. 
	Figure 57: Eastern Aleutian Islands school enrollment 1996–2018. 
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	Figure
	Figure 58: Central Aleutian Islands school enrollment 1996–2018. 
	Figure 58: Central Aleutian Islands school enrollment 1996–2018. 


	Figure 59: Dropout rates for Eastern Aleutian Islands school districts, 1990–2017. 
	Factors inﬂuencing observed trends: The communities within the CAI and EAI can be considered either remote or extremely remote. Rural area schools are particularly vulnerable to closure, teacher turn over, and possible community disruption. High dependence on commercial ﬁsheries and other natural resources may drive population shifts according to season and availability. Schools are particularly important for remote community stability, as they often serve as meeting places, libraries, places of lodging and
	-

	Implications: The closure of a school in these communities would have a profound eﬀect, further discouraging families or potential families to remain in the area, amplifying the decline of local resident populations. School closures would discourage permanent residency, even when improved employment opportunities arise. Schools are cultural centers and serve as important indicators of social and economic viability, and community well-being (Lyson 2002, Thomas 2002, Thomas 2005). Within rural communities in 
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	2017). Patterns of diminishing enrollment and school consolidation suggest a decrease in property values and taxes, fragmented community, and lost business, as well as declines in reported quality of life scores (Sell et al. 1996, Thomas 2002). Some research ﬁnds the rate of participation in community organizations decreases in communities experiencing school closures (Oncescu and Giles 2014, Sell et al. 1996). These ﬁnding suggest that reduced enrollment and school closures may ﬂag disruptions in social co
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	Responses to Comments from the Scientiﬁc and Statistical Committee (SSC) 
	December 2017 SSC Comments 
	This year, as in the past, the Ecosystem Considerations Reports are insightful, well written and well edited. Both chapters were helpful in providing a context within which to assess the stocks of commercially harvested ﬁsh in Federal waters oﬀ Alaska. The editors and authors have been very responsive to the comments and suggestions provided by the SSC in 2016. Last year the SSC raised the question as to whether suﬃcient resources were being devoted to the compilation and editing of the Ecosystem Considerat
	Thank you. As a result of continued staﬃng support from AFSC, this year we provide updates to the Eastern Bering Sea (Siddon & Zador), Gulf of Alaska (Zador & Yasumiishi, with Rob Suryan providing coordination with Gulf Watch Alaska), and Aleutian Islands (Zador & Ortiz) Ecosystem Status Reports. 
	The SSC was pleased to see the addition of the rapid zooplankton assessments included for both EBS and GOA Ecosystem reports. As requested by the SSC, these data are shown with historical context for small and large copepods, and euphausiids. Additionally, this indicator now estimates abundance rather than proportional catches, which aids in interpretation. 
	The RZA continues to be applied to more surveys, for example the northern Bering Sea, and we have also added some contextual information for zooplankton condition in the form of lipid percentages. We have also standardized the presentation style of maps and time-series for ease of interpretation moving forward. Finally, we will be able to present a comparison of RZA to fully processed net samples in the coming year to assess the eﬃcacy of the RZA. 
	There are expanded analyses of abundance and distribution shifts of groundﬁsh and jellyﬁsh from AFSC bottom trawl surveys. New indicators for groundﬁsh from these surveys (mean length, lifespan and total biomass) have remained relatively stable over the time series. The SSC appreciates the inclusion of these new indicators, but suggests that even small changes could have far reaching implications as these are relatively gross-scale indicators. The SSC requests further development 
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	of these indicators as anomalies to better discern long-term trends. The SSC looks forward to the eventual inclusion of comparisons of events in the diﬀerent LMEs, and how events in one LME may aﬀect another LME. 
	The indicators for Mean Lifespan and Mean Length of the Fish Community as well as the Stability of Groundﬁsh Biomass indicator have been revised in 2018 to include both a mean and trendline over the respective time series to better discern long-term patterns and detect signiﬁcant diﬀerences in the slope of the trendline. Comparisons across LMEs remains a gap in the Reports, but something the author and Report editors will continue to work towards for future Reports. One of the issues with comparisons across
	The editors present a new “Groundﬁsh Recruitment Predictions” section, which includes a new indicator for Paciﬁc cod and ﬁve new indicators for walleye pollock. The SSC supports the development of these predictions based on ecosystem indicators that are ﬁrmly grounded in mechanistic relationships. Eﬀort should be directed toward the eventual incorporation of these recruitment indicators in the assessment models. The SSC recommends that these species-speciﬁc predictions are transitioned to the ESPs (Ecosyste
	-
	-

	The contribution authors and Report editors are maintaining open communication with stock assessment authors and those involved in producing the ESPs. These species-speciﬁc indicators will be transitioned to the appropriate ESPs as they become available. 
	The SSC commends the ongoing eﬀorts to expand the treatment of the Human Dimensions portion of the Ecosystem Considerations chapters. In particular, a number of new indicators have been incorporated. The SSC notes that development of indicators on the health of ﬁshing communities lags behind that of indicators for the health of the ﬁsh stocks and that the latter were developed and reﬁned over a long time period. The SSC encourages the continued development of this section and, in particular, the development
	The Economic and Social Sciences Research program, in collaboration with the Report editors, has made further improvements to the Human Dimensions indicators for 2018, although some of these updates are reﬂected in the Groundﬁsh Economic SAFE report that will be reviewed by the SSC in February 2019. For this version of the report, we have (i) re-evaluated the deﬁnition of ﬁshing communities and redrew the boundary for inclusion in the analysis to reﬂect a better representation of how coastal communities are
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	this type of information in future versions of the Groundﬁsh Economic SAFE report. 
	The inﬂuences on the economic and social life in Alaskas coastal communities are many and the SSC cautions against facile causal interpretations. At the same time, it would be a mistake to dismiss the indicators presented in the chapter as being disconnected from and unrelated to the Councils sphere of inﬂuence. The policy choices made by the Council and the US Congress directly inﬂuence the possibilities presented to the communities of the North Paciﬁc. The SSC suggests that the Human Dimensions ecosystem 
	The Report editors welcome collaborating with the Social Science Planning Team to best represent and report coastal communities and impacts of policy choices on Alaskans. 
	The LEO Network is a potentially valuable resource for ecosystem considerations that invites community members to record unusual observations which are then vetted by scientiﬁc consultants before being published on the network. The SSC recommends the exploration of projects within this tool that ask speciﬁc questions to solicit relevant observations from communities. It is not clear how this network is publicized or the level of community awareness and involvement. Speciﬁc to the northern Bering Sea, the SS
	-
	-

	Community awareness of, and involvement in, eﬀorts to engage citizen science/LTK have increased, both through the LEO Network and through direct communication with NOAA employees and Report editors. For example, the observations of pollock in Bristol Bay (see EBS Ecosystem Status Report) were communicated directly from a subsistence ﬁsher to NOAA’s Alaska Regional Oﬃce who forwarded the contact to Elizabeth Siddon, editor of the EBS Ecosystem Status Report. That communication resulted in additional direct r
	Last year the SSC raised the issue of how well report authors have managed to address the implications of their indicator ﬁndings for the current year. One of the important reasons for the existence of the Ecosystem Considerations chapters is to provide the Council with information that may be relevant for adjusting the coming years harvest speciﬁcations or biological reference points. Thus, the indices and their implications that are most valuable will be those that provide information that inform Council 
	-
	-
	-

	The Report editors continue to review Implications section for utility and relevance to adjusting harvest speciﬁcations or biological reference points. We provide examples of useful Implications and assist authors in better realizing direct implications of their indicators. It is an on-going eﬀort. 
	The editors raised the question as to the possibility of a change in the organization of the Ecosystem 
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	Considerations chapters. Currently, the report is organized by trophic level, reﬂecting the ﬂow of energy and material to ﬁsh stocks and the ﬁshing community within each LME. The editors are considering reformatting by ecosystem-scale management objectives created by Congress (see Table 1 in each of the chapters). The SSC questions the utility of the proposed change from a document focused on understanding of relevant portions of the marine ecosystem in which ﬁshing is occurring to one that focuses more on 
	The organization of the Ecosystem Status Reports remains by trophic level for physical and ecological indicators and by management objectives for the human dimensions section, as was done for the 2017 Reports (i.e., no change). 
	-

	New this year, we are working with the AFSC communications staﬀ to produce a “public-friendly” version of the ESRs. We hope to have the ﬁrst edition of the EBS ESR brochure available to the public in January. We will be using the term Hot Topics to reﬂect the most important ecosystem assessment features for the current year. Thus, we will use Noteworthy Items as the new title for the former Hot Topics in the ESR assessments. This new title is more appropriate as this section is used for noteworthy informati
	SSC Comments from Dec 2016 regarding the Aleutian Islands 
	The new organizational structure served to highlight the lack of information for the Aleutian Islands in particular and would like to encourage continued investigation into additional sources of data for this LME, particularly in the Western Aleutians, as patterns there appear to frequently diverge from that of the Central and Eastern subregions. 
	The lack of information available for the Aleutian Islands, particularly relative to the Eastern Bering Sea and Gulf of Alaska, continues to be a challenge. This region has not been the focus of a large integrated reseach project as have the eastern Bering Sea and Gulf of Alaska. This is of particular concern as changes in ﬁshing pressure in the Aleutians can be directly related to events in the eastern Bering Sea, such as the increased cod ﬁshing described in the Noteworthy section (p. 37). We hope to revi
	Continuous plankton recorder (p. 62): It would be useful to provide the names of at least the most important (by biomass and by number) of the zooplankton species (in all regions). Large and small categories, especially from places that are not often or well-studied, do not tell us whether we are dealing with the same species in the southern Bering as on the eastern Bering Sea shelf. 
	We requested these data and have included them in both the AI and GOA reports this year. The author emphasizes that these data require carefully interpretation as the seasonal aggregation can mask signiﬁcant within season. For example, the copepod Neocalanus plumchrus is common in spring but nearly absent in late summer/fall. Also, biomass is a taxon speciﬁc value from literature, not actually measured. Some taxa are a group of many species, some are individual life history stages of a single species. 
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	Weight at length of groundﬁsh (p. 69): The reduced weight at length of many groundﬁsh species suggests either that there are too many ﬁsh, or that the prey of the ﬁsh has declined. Another implication is that the nutritional quality of the ﬁsh taken by Steller Sea Lions in the western Aleutians may of low quality, an issue that other research has shown to be particularly problematic for juvenile sea lions. 
	We agree that this may be an implication that is of particular concern as length-weight residuals continue to remain negative for several groundﬁsh species (p. 67). 
	Mean weighted distributions of rockﬁsh (p. 69): It appears that the increased temperatures encountered by the ﬁsh did not lead to a deepening of their distributions. Could this indicate that the temperatures encountered so far are not stressing the ﬁsh? 
	-

	While the temperatures at those depths have varied through the years, the range in temperature change has been small so has likely not had a measurable impact on the rockﬁsh depth distribution. The range in temperature change has been higher in shallower water as expected (1.1C at 100mm; 0.8C at 200m). While the temperature at depth has been roughly the same for the last 20 years, despite 2016 having the highest temperatures in the record. The authors suggest that increases in overall rockﬁsh abundance coul
	o
	o
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