
Introduction
In the recent past the eastern Bering Sea has alternated 
between periods of warm (2001-2005) and cold (2007-2013) 
conditions during the spring. Warm conditions had reduced 
sea ice cover, westward winds, and weak currents. Cold 
conditions were characterized by significant sea ice cover, 
winds from the north, and westward currents. Biological 
differences included changes in zooplankton community 
composition and abundance (Stabeno et al. 2012).

Flathead Sole Hippoglossoides elassodon are a pleuronectid 
that inhabit the continental shelf waters of the North Pacific 
Ocean from the northwest coast of North America to the Sea 
of Okhotsk in Asia. They are also abundant on the continental 
shelf of the eastern Bering Sea and spawn pelagic eggs there 
during the spring. Bottom water temperature can influence 
the spatial distribution of adult Flathead Sole, and thus affect 
where spawning occurs.
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The objective of this study was to 
determine how warm and cold conditions 
affected the distribution and abundance 
of Flathead Sole eggs spawned in May in 

the southeast Bering Sea (Fig. 1).
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Methods
Egg abundance (number/10 m2) was determined from 
ichthyoplankton surveys conducted during warm (2002, 2003 and 
2005) and cold (2007 - 2010) conditions (sampling methodology 
is described in Matarese et al. 2003). Eggs were collected during 
May in the southeast Bering Sea from the same station locations 
among years (Fig. 2 and 3). Water column temperature was 
measured at each station using a CTD.

General Additive Models (GAM)
Variable-coefficient general additive models were used to account 
for temperature effect on egg abundance varying with location 
(latitude and longitude). Covariates initially tested were spawning 
stock biomass for the eastern Bering Sea and Aleutian Islands area 
for each year, latitude, longitude, day of year, near bottom water 
temperature, and warm or cold condition. The number of stations 
used for warm condition was 170, and 152 for cold condition. 
Given the overdispersed nature of the egg data (about 30% of 
the data were zero) a two-step approach was used to model egg 
distribution (Fox et al. 2000). First we fit a binomial presence/
absence model, then a model with natural log transformed egg 
abundance having only catches > 0 used for the response variable. 
Model diagnostics, such as residual plots and Akaike Information 
Criterion (AIC), were used to determine the covariates that 
produced the best model fit for each type. The product of the 
binomial and egg abundance models was used to estimate egg 
abundance throughout the study area during warm or cold 
conditions.

Results
Near bottom water temperatures were almost homogenous 
during warm conditions, ranging between 3° and 5°C (Fig. 4).

During cold conditions near bottom temperatures varied 
greatly, from below 0°C in the northeast to nearly 4° in the 
southwest (Fig. 5). 

Modeled egg abundance
Both the binomial and egg abundance models had spawning stock 
biomass, day of year, near bottom temperature, and latitude and 
longitude as covariates. The binomial model explained 44% of the 
deviance, and egg catch model explained 67%.

Eggs were more abundant and were present throughout the 
continental shelf during warm conditions indicating that spawning 
most likely was occurring there (Figs. 6 and 7). The transport of 
eggs from the Gulf of Alaska through Unimak Pass may be greater 
during the warm conditions as indicated by the relatively large 
area of high probability of egg presence and higher abundance 
through the pass and into the Bering Sea (Figs. 6, 7, 8, and 9). 
Area of highest egg abundance contracted and shifted to the 
southwest during cold conditions, possibly indicating that 
spawning Flathead Sole were avoiding temperatures less than 
2°C that were occurring in the northeast (Figs. 7 and 9). Delayed 
spawning due to cold conditions could have influenced egg 
abundance and distribution but it could not be investigated due 
to lack of surveys later in the spring.

Conclusion
Flathead Sole exhibit some degree of plasticity in spawning 
distribution related to springtime water temperature. We 
documented changes of both location and number of eggs 
spawned, and this could have potential consequences on  
early-life survival and recruitment of this species by affecting 
larval drift toward nursery areas, and spatial overlap with 
predators and prey.
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Figures 2 and 3: Measured egg abundance during warm (top panel) and cold (bottom 
panel) conditions.

Figure 1. Study area (red outline), and major currents (blue arrows).


