ks Building Early Ontogeny Pelagic Exposure Profiles for GOA-IERP Species
based on Historical Ichthyoplankton Data—Arrowtooth Flounder
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* Arrowtooth flounder (ATF) eggs and larvae are
most abundant in deep water along the slope
during January and February in the western
GOA. Larvae continue to be abundant during
March and common though less abundant

during spring through summer. Larvae >20
mm are not sampled efficiently by 60 cm EaStern "So
Bongo nets.
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